

Quantum Physics II

Lecture notes of Professor Zoë Holmes

Autumn 2024

Table of contents

1	Basics	5
1.1	The qubit	5
1.2	Evolution	6
1.3	Measurements	8
1.4	Superposition and Interference	10
2	Composite Systems and Entanglement	13
2.1	State Space for Many Particles	13
2.1.1	Example: Two Qubits	15
2.2	Operators	15
2.2.1	Example: Spin $\frac{1}{2}$ Operators	16
2.2.2	Explicit matrix and vector representation of the tensor product	17
2.3	Measurements	17
2.3.1	Global Measurement	18
2.3.2	Partial Measurement	18
2.3.3	Example: Qubit Measurements	19
2.4	Entanglement	19
2.5	The Quantum Eraser	21
2.6	No signalling	24
2.7	Non-locality and Bell inequalities	25
2.7.1	Quantum Psychics	25
2.7.2	More formal derivation (i.e. pinning down exactly what is spooky)	29
2.8	Contextuality	32
3	Reduced and mixed quantum states	34
3.1	Density operators	34
3.2	Pure states and mixed states	35
3.3	Reduced states	37
3.4	General properties of density operators	39
3.5	Evolution of density operators	41
4	Measurement and decoherence	42
4.1	The measurement problem	42
4.2	Easy resolutions and why they do not solve the problem	43
4.2.1	The collapse postulate	43
4.2.2	Decoherence	45
4.2.3	Instrumentalism	46
4.3	Decoherence as a dynamical process	47

4.3.1	A simple model for decoherence	48
5	Identical multi-particle systems	51
5.1	Two identical particles	51
5.2	Multiple identical particles	54
5.2.1	Bosons	54
5.2.2	Fermions	55
5.3	Distinguishing identical particles	56
5.4	Second Quantization:	58
5.5	The Hong-Ou-Mandel Effect and Bosonic Bunching	60
6	Perturbation Theory	62
6.1	Non-degenerate Time-Independent Perturbation Theory	62
6.1.1	Examples	65
6.2	Degenerate Time-Independent Perturbation Theory	68
6.2.1	Examples	69
7	Time-dependent Hamiltonians	71
7.1	Dyson series	71
7.2	Interaction Representation	74
7.3	Transition Probabilities	77
8	Variational Principle	82
8.1	General Idea:	82
8.2	The variational Principle for an arbitrary ansatz	87
8.3	Hartree-Fock Theory	91
9	Symmetry in quantum mechanics	95
9.1	Introduction	95
9.1.1	Motivational examples: Symmetry is everywhere in quantum!	95
9.1.2	Introduction to groups	97
9.1.3	Finite group examples	98
9.1.4	Continuous group examples	101
9.2	Basic definitions and properties of groups	103
9.3	Basic definitions and properties of representations	106
9.4	(Ir)Reducible Representations of Groups	109
9.4.1	Warm up example	109
9.4.2	Definitions of (Ir)Reducibility.	111
9.5	Schur's Lemmas	113
9.6	Irreps are all about Block Diagonalization!	114
9.7	How many irreducible representations does a group have?	118
9.7.1	Equivalence relations and conjugacy classes.	119
9.8	Orthogonality theorems	121
9.8.1	Grand Orthogonality Theorem	121
9.8.2	Group averaging (twirling)	123
9.8.3	Petit Orthogonality Theorem.	126
9.9	Characters	128
9.9.1	Example with C ₃ v.	130
9.10	Non-examinable group and representation theory details/proofs	132
9.10.1	Properties of functions	132

9.10.2 Reordering Theorem	134
9.10.3 Proof of Lagrange Theorem, Right and Left cosets	134
9.10.4 Composition of Conjugacy classes theorem statement and proof	135
9.10.5 Proof of Schur's lemma	137
9.10.6 Proof of lemma 1	137
9.10.7 Proof of lemma 2	137
9.10.8 Proof of grand orthogonality Lemma	138
9.10.9 Proof of Burnside Lemma	139
9.10.10 Representations of Lie Groups and Lie Algebras	139
9.10.11 Projectors	140
9.10.12 Basis notation	140
9.10.13 How to construct projectors	141
9.10.14 Ammonia Molecule Example	142
10 Lie Algebras/Angular momentum	151
10.1 Intro to Lie Algebras via Rotations. An trimmed copy of I.3 in GTNFP	151
10.1.1 A little bit at a time	151
10.1.2 Lie in higher dimensions	153
10.1.3 Structure constants	154
10.1.4 Rotations in Higher Dimensions	157
10.2 Lie Algebra of $SO(3)$ and Ladder Operators: Creation and Annihilation (A trimmed copy of (IV.2 of GTNFP))	158
10.2.1 Ladder operators are useful (a recap of stuff you've seen before)	158
10.3 Addition of Angular Momentum (e.g. multiplying $SO(3)$ representations)	161
10.3.1 The Clebsch-Gordan decomposition (examinable!)	162
10.3.2 Wigner-Eckert Theorem (Non-examinable)	165
10.4 Other applications of Group Theory and Lie Algebras	166

Chapter 1

Basics

Introduction to quantum courses often start by describing the behavior of different quantum systems on a case by case basis. You consider a particle in a box, you consider a spin, you consider an atom, you consider a photon, etc. However, quantum systems of very different sorts can behave in similar ways by virtue of simply being quantum systems. With this line of thought, it can be powerful to abstract away from the actual stuff the system is made out of and just consider an N level quantum system (or a collection of M different N level quantum systems). This approach is aesthetically satisfying and also powerful in that it allows one to derive general results on what can/cannot be done with any quantum system (rather than a particular realisation of one). We will take this approach below to recap some of the basic principles of quantum mechanics.

1.1 The qubit

A two-level quantum system, also known as a quantum bit or "qubit", is the simplest possible quantum system. There are many different (approximate) physical realisations of a qubit in practise. Essentially, any physical system that is completely characterized by two states (or by a system with two energy states sufficiently separated from all others). Examples include:

1. An electron's spin ($|\uparrow\rangle, |\downarrow\rangle$)
2. A photon's polarization ($|H\rangle, |V\rangle$)
3. A pair of atomic (or molecular) levels ($|G\rangle, |E\rangle$)
4. The collective state of a super-current in a superconductor ($|G\rangle, |E\rangle$)
5. Two different arms a photon can take in an optical circuit ($|\text{'left'}\rangle, |\text{'right'}\rangle$)
6. ...

We abstract away from the different realisations and choose a canonical basis denoted by $\{|0\rangle, |1\rangle\} \equiv \mathcal{H}_1$. A general single qubit state can be written as

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}$$

with $|\alpha|^2 + |\beta|^2 = 1$. However, a more insightful representation of a single qubit $|\psi\rangle$ can be found by rewriting the constraint as

$$|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle \tag{1.1}$$

Here $\cos(\theta/2)$ and $\sin(\theta/2)$ allow for arbitrary $|\alpha|$ and $|\beta|$ such that the state is normalized to 1^1 , and ϕ allows for an arbitrary phase difference between $|0\rangle$ and $|1\rangle$. We note that the global phase is unphysical and so does not need to be considered for full generality. The parameters $\{\theta, \phi\}$ can be viewed as defining a unit vector in \mathbb{R}^3 in spherical coordinates,

$$\mathbf{v} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta). \quad (1.2)$$

This observation is helpful as it allows one to visualise the state of a single qubit on what is known as the Bloch sphere as sketched in Fig. 1.1. For example, the $|0\rangle$ state corresponds to $\theta = 0$ and the $|+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state corresponds to $\theta = \pi/2$ and $\phi = 0$. (We will come back to the Bloch sphere to study in more detail once we have covered density matrices in a couple of chapters time.)

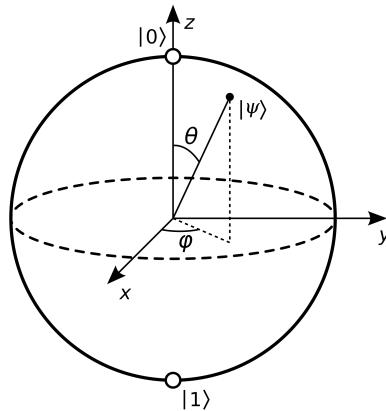


Figure 1.1: **The Bloch Sphere.** The state of a qubit can be represented as a vector in \mathbb{R}^3 . (Image from Wikipedia).

Notice the analogy between classical computing bits and qubits. A qubit can be viewed as a generalization of a classical bit, which instead of being restricted to just 0 or 1, can take a superposition of 0 and 1. This perspective is crucial when it comes to discussing the potential of quantum systems for computation or communication. However, we stress that the abstract notion of a qubit is not only relevant in a quantum computational context but is a powerful approach to take more generally.

1.2 Evolution

The evolution of a quantum state is given by the Schrodinger equation²,

$$i\frac{\partial |\psi(t)\rangle}{\partial t} = H|\psi(t)\rangle. \quad (1.3)$$

When the Hamiltonian H is time-independent, the evolving state can be written directly as

$$|\psi(t)\rangle = U(t)|\psi(0)\rangle \quad (1.4)$$

¹You might be wondering why we have $\theta/2$ rather than just θ here. There are multiple levels of explanation for this factor which we will see as the course progresses. Firstly, it arises naturally in the density matrix formalism due to the fact that the trace of the square of a Pauli matrix is 2 not 2. More fundamentally, it arises from the relationship between the groups $SU(2)$ and $SO(3)$. For now, we just take it as part of the definition.

²Here and through out these notes I will set $\hbar = 1$.

where $U(t) \equiv e^{-iHt}$ is the *unitary time evolution operator*. While these two perspectives are equivalent and any unitary operation is generated by exponentiation of a Hamiltonian (i.e. a Hermitian operator) it is often convenient to abstract away and forget about the underlying Hamiltonian³.

A unitary operation is a matrix ⁴ U such that $UU^\dagger = U^\dagger U = \mathbb{I}$. Here are some important properties of unitary operations:

- **Reversible:** $U^\dagger(U|\psi\rangle) = |\psi\rangle$
- **Length preserving:** $\langle\psi|U^\dagger U|\psi\rangle = \langle\psi|\psi\rangle = 1$.
- **Linear:** $U(\alpha|\psi\rangle + \beta|\phi\rangle) = \alpha U|\psi\rangle + \beta U|\phi\rangle$.

Let us have a look at the evolution of a single qubit state. An important set of operators in this case are the Pauli matrices (for which there are numerous notational conventions⁵):

$$\sigma_0 = \mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_1 = \sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \sigma_y = Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \sigma_z = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \quad (1.5)$$

Pauli matrices appear everywhere so it is helpful to become very familiar with their properties. Here are some useful (interrelated) properties that it is good to remember to save yourself needing to re-derive:

1. $\text{Tr}[\mathbb{I}] = 2$ and $\text{Tr}[X] = \text{Tr}[Y] = \text{Tr}[Z] = 0$
2. For $i = 1, 2, 3$ we have $\sigma_i \sigma_j = \delta_{ij} \mathbb{I} + i \epsilon_{ijk} \sigma_k$ where ϵ_{ijk} is the Levi-Civita symbol (i.e. $\sigma_i^2 = \mathbb{I}$, $\sigma_x \sigma_y = i \sigma_z$, $\sigma_y \sigma_x = -i \sigma_z$, ...)
3. Commutation: $[\sigma_i, \sigma_j] = \sigma_i \sigma_j - \sigma_j \sigma_i = 2i \epsilon_{ijk} \sigma_k$
4. Anticommutation: For $i = 1, 2, 3$ we have $\{\sigma_i, \sigma_j\} = \sigma_i \sigma_j + \sigma_j \sigma_i = 2 \delta_{ij} \mathbb{I}$.
5. The Pauli matrices form an orthonormal basis with $\text{Tr}[\sigma_i \sigma_j] = 2 \delta_{ij}$

Exercise: verify these identities!

Pauli matrices are both hermitian and unitary so, depending on the context, they can be thought of as: evolution operators, generators of evolution operators or as measurement. In fact being able to switch freely between these perspectives is very convenient.

Paulis as gates: For example, X acts as the NOT gate on a quantum bit:

$$\begin{aligned} X|0\rangle &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle \\ X|1\rangle &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle. \end{aligned} \quad (1.6)$$

³At least until it comes to the symmetry properties of states. We will discuss again the relationship between these two pictures when we discuss Lie groups and Lie algebras in the groups and representations part of the course

⁴I appreciate in Giuseppe's notes he helpfully put hats on operators (i.e. \hat{U}) so you could keep track of what is and is not an operator. However, in grown-up quantum mechanics it's pretty standard to not bother with the hats and leave the reader to figure out whether or not something is an operator themselves. This may sound annoying right now but I promise you you'll get used to it. I've not intentionally put a hat on an operator in years. That said, there may be the odd hat floating around in these notes from when I've copied over old material.

⁵I may switch between these various choices in notation as is standardly done - you'll get used to it.

Exercise: compute the action of each of the Pauli operators on the Bloch vector of a generic single qubit state.

Paulis as generators. A Pauli operator can also be seen as a generator of a unitary evolution. To see this recall that the Pauli matrices form a matrix basis. As such, any single qubit Hamiltonian can be written as⁶

$$H = \sum_{i=1}^3 \omega n_i \sigma_i = \omega \mathbf{n} \cdot \boldsymbol{\sigma}, \quad (1.7)$$

where we have defined the vectors $\mathbf{n} = (n_1, n_2, n_3)$, $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ and we have pulled out a factor ω as setting the over all energy scale. It follows that any single qubit unitary can be written as

$$U = e^{-iHt} = e^{-i\omega \mathbf{n} \cdot \boldsymbol{\sigma} t}. \quad (1.8)$$

What is the effect of applying this evolution operator to a generic single qubit state $|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$? To see this we first note you can use the properties of the Pauli operators combined with the definition of the matrix exponential (*Exercise: do this!*) to show that:

$$e^{-i\mathbf{n} \cdot \boldsymbol{\sigma} \omega t} = \cos(\omega t) \mathbb{I} - i \sin(\omega t) \mathbf{n} \cdot \boldsymbol{\sigma}. \quad (1.9)$$

It now remains to evaluate the effect of this operator on a single qubit state. Let us look at an example. Suppose $\mathbf{n} = \mathbf{n_z} = (0, 0, 1)$ then $\mathbf{n_z} \cdot \boldsymbol{\sigma} = \sigma_z$ and we have

$$\begin{aligned} e^{-i\omega \sigma_z t} (\cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle) &= \cos(\theta/2)e^{-i\omega t}|0\rangle + \sin(\theta/2)e^{i\phi}e^{+i\omega t}|1\rangle \\ &= e^{-i\omega t}(\cos(\theta/2)|0\rangle + \sin(\theta/2)e^{i(2\omega t+\phi)}|1\rangle) \end{aligned} \quad (1.10)$$

Recalling the Bloch vector in Eq. (1.2) we thus see that the state rotates around the Z axis by an angle $2\omega t$.

In fact this holds true more generally - a Hamiltonian of the form Eq. (1.7) causes a qubit state to rotate around the axis \mathbf{n} at a rate $2\omega t$ as shown in Fig. 1.2. *Exercise: show this!* This provides a convenient means of inspecting how a single qubit state will evolve without needing to perform explicit calculations.

1.3 Measurements

There are multiple ways of representing measurements in quantum mechanics. The first measurement that students usually are introduced to are ‘observables’. These are Hermitian operators, i.e. an operator M such that $M = M^\dagger$. In virtue of being Hermitian, observables are diagonalizable and have real eigenvalues so we can write

$$M = \sum_k \lambda_k |\lambda_k\rangle \langle \lambda_k|. \quad (1.11)$$

The expectation of an observable M in a state $|\psi\rangle$ is then given by

$$\langle M \rangle = \langle \psi | M | \psi \rangle = \sum_k \lambda_k p_k \quad (1.12)$$

⁶We have dropped the identity term here as it will only generate a global phase and so is unphysical if considering just the evolution of a single qubit. Note that if we were considering the partial evolution of a two qubit system we would need to be more careful as this could be a (physical) relative phase.

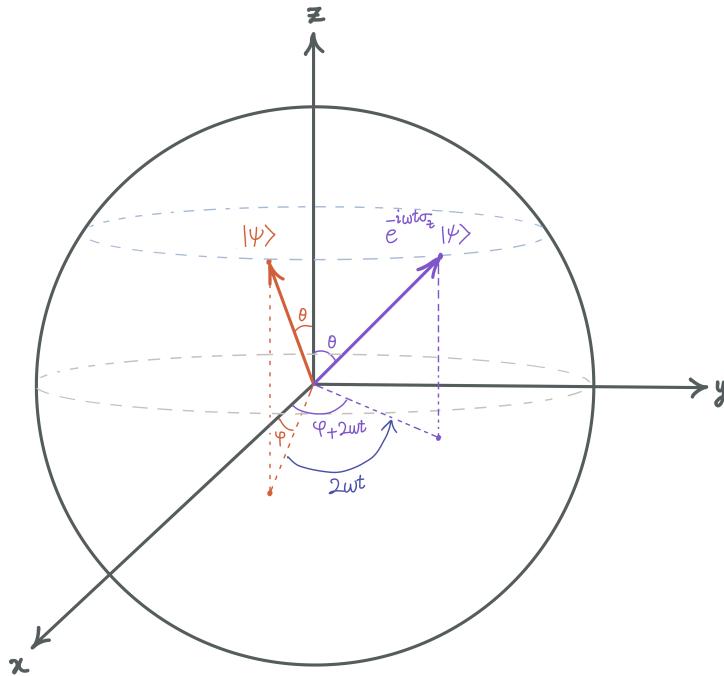


Figure 1.2: **The Rotation in Bloch Sphere.** Pauli matrices can be a generator of a rotation.

with $p_k = |\langle \lambda_k | \psi \rangle|^2$.

The operator $|\lambda_k\rangle\langle\lambda_k|$ is alternatively known as a projector. We can also directly define measurements in terms of a set of projectors $\{\Pi_k\}$ where $\Pi_k^2 = \Pi_k$. The probability of obtaining an outcome k is given by

$$p_k = \langle \psi | \Pi_k | \psi \rangle \quad (1.13)$$

and so to ensure that the probabilities sum to 1 we require that $\sum_k \Pi_k = 1$.

In the case of an ‘ideal’ measurement it is commonly said that the state of the system ‘collapses’ onto the state

$$\frac{\Pi_k |\psi_k\rangle}{\sqrt{p_k}}. \quad (1.14)$$

This captures the idea that ideal measurements are repeatable because another instantaneous measurement would give the same outcome and leave the output state unchanged. In the case of rank one measurements the resulting state is simply the eigenstate corresponding to the measured outcome. That is, if one obtains outcome k where $\Pi_k = |\lambda_k\rangle\langle\lambda_k|$, the resulting state on the system is $|\lambda_k\rangle$.

It is worth noting that this account of measurement is not the full story. Firstly, it is not sufficiently general and there are all sorts of measurements that cannot be captured by observables or projectors (e.g. imperfect measurements). Instead, a complete account of measurement can be provided by the positive operator-valued measure (POVM) formalism. This goes beyond the requirements of this course but is covered in my Quantum Information Theory course and Jean-Philippe Brantut’s Quantum optics course if you are interested in learning more. Secondly, the claim that the quantum state collapses on measurement is utterly baffling for a number of reasons. This we will return to in Chapter 6.

1.4 Superposition and Interference

For most people, the formalism of quantum mechanics (when first introduced to it at least) is so different to most of the physics you have seen before that it is hard to dissect what about quantum physics really is different from classical physics, versus what is just foreign notation. This can partially be addressed by familiarity - hopefully you are already relatively comfortable with the quantum formalism⁷ but part of the aim of this course is to get you more and more fluent at working with quantum mechanics.

Once you are well acquainted with the quantum formalism, the opposite problem can occur. It's easy to become so used to working with it that you forget to take a step back and take in quite how weird and wonderful it is. And it is important to understand how quantum mechanics is special, not just because it's fun and explaining it is a great trick at parties, but also because it's only by understanding what makes quantum physics special that we can better learn how to manipulate quantum systems to our advantage. This insight is at the heart of what is sometimes called the 'second quantum revolution' that is currently underway - where increasingly we are able to manipulate quantum systems for technological advantages.

In the next couple of chapters we will take a two pronged approach to trying to highlight what makes quantum mechanics unique. Firstly, we will present a series of (thought⁸) experiments. In parallel, we will present a series of no-go theorems about what is possible and not possible in a quantum world. These thought experiments will heavily draw on Terry Rudolph's Quantum Physics lecture notes from when he was a professor at Imperial College London.

The concept of a superposition is one that we are particularly vulnerable to forgetting is mysterious due to over familiarity. The following (thought) experiments are intended to try and reignite an appreciation for some of the wonder of superpositions.

Imagine we have a quantum system that can be in two different states $|0\rangle$ and $|1\rangle$ and study its evolution in time. John Townsend in Chapter 1 of 'A Modern Approach to Quantum Mechanics' considers the Stern-Gerlach experiment with a particle that can bend to the left '0' or bend to the right '1'. Terry Rudolph makes the picture more exciting (but less realistic⁹) by talking about cats in the 'alive' state and 'dead' state. If you like atomic physics think about an atom that can be in a 'ground' state or 'excited' state. If you like photonics, think about the 'left' or 'right' arm of an interferometer. Take your pick. I'm going to channel my inner quantum information theorist and just call the two states '0' and '1'.

Thought experiment 1: We start with a system in state $|0\rangle$. We wait half an hour before measuring it. We then find that 50% of the time it is in state $|1\rangle$ and that 50% of the time it is in state $|0\rangle$.

Thought experiment 2: We start with a system in state $|1\rangle$. We wait half an hour before measuring it. We then find that 50% of the time it is in state $|1\rangle$ and that 50% of the time it is in state $|0\rangle$.

⁷Seeing that classical mechanics at an advanced level can also be formalized in similar manner to quantum mechanics can also help one appreciate that its not quantum's formalism that makes it special. You will see this in the Analytical Mechanics course.

⁸While all of these 'experiments' are in some sense physically possible from a theorist's perspective just the thought of most of them would hurt many experimentalists.

⁹We end up with resuscitated zombie cats.

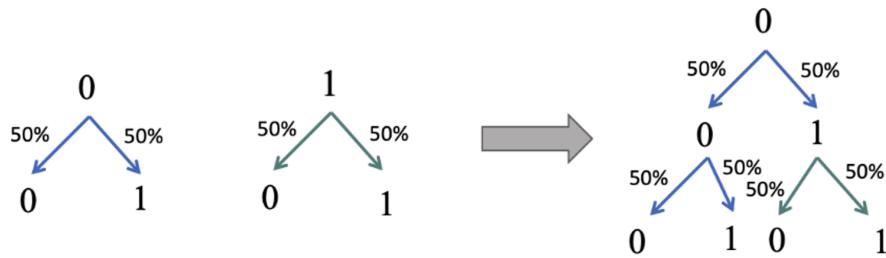


Figure 1.3: Probability tree diagram corresponding to thought experiments 1, 2 and 3

Based on these two thought experiments lets now consider the following scenario.

Thought experiment 3: We start with a system in state $|0\rangle$. We wait half an hour before measuring it. We then find that 50% of the time it is in state $|1\rangle$ and that 50% of the time it is in state $|0\rangle$. THEN we wait another half an hour before measuring again. *What do we expect to find?*

Well drawing a probability tree we expect to end up with a 50% chance of finding the system in state $|0\rangle$ or state $|1\rangle$ as shown in Fig. 1.3. Overall, half the time we end up with the system in state $|1\rangle$ and half the time we end up with the system in state $|0\rangle$.

Ok, now let's consider the following scenario:

Thought experiment 4: We start with a system in state $|0\rangle$. We *wait a full hour* before measuring it. *What do we expect to find?*

Well intuitively / thinking classically we would expect to see the same as in thought experiment 3. But when we do experiment 4 we actually find that the system is always in $|0\rangle$.

What is going on here? Well firstly, that the act of measuring the system seems to have an effect on how the system behaves. Secondly, the state of the system after half an hour is *not* that it is in either $|0\rangle$ *or* $|1\rangle$ with equal probability. Rather, that it is in a special quantum state - it is in a *superposition*.

Let us describe this situation mathematically. The dynamics of thought experiment one can be described as:

$$|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle). \quad (1.15)$$

Thought experiment two can instead be described as

$$|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle). \quad (1.16)$$

The negative sign here is essential to account for the linearity of quantum mechanics (i.e. that its dynamics are governed by unitary operations) - this ensures that orthogonal states are mapped

to orthogonal states. It follows from Eq. (1.15) and Eq. (1.16) and the linearity of quantum mechanics that the fourth thought experiment can be described as

$$|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle) \rightarrow \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) + \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right) = |0\rangle. \quad (1.17)$$

The cancellation of the terms here is what is known as quantum *interference*. It is this causes the probability tree picture in Fig. 1.3 to break down and ensures that a quantum state of the form of Eq. (1.15) cannot be understood simply as describing a system that is in ‘0’ or ‘1’ with probability 1/2 each. Rather they represent a non-classical state of affairs, that we cannot describe using our conventional classical vocabulary, and instead just call a ‘superposition’.

Chapter 2

Composite Systems and Entanglement

In the previous section we discussed a single two level system and while its pretty cool how much quantum physics can be discussed when looking at such a simple system.... there's only so far you can go. In this chapter, we extend the quantum formalism to analyze the behavior of quantum systems composed of many degrees of freedom. We will see that when the postulates of quantum mechanics are applied to systems of many particles, they give rise to interesting and counter-intuitive phenomena such as quantum entanglement.

2.1 State Space for Many Particles

Suppose we have two particles, labeled A and B . We know the state of the system comprising both particles, which we call AB , must be described by a vector in a complex vector space. The natural question to ask is, in what space does a generic state for the two particles, $|\psi_{AB}\rangle$, live? If we call \mathcal{H}_A and \mathcal{H}_B the vector (Hilbert) spaces in which the quantum states of the individual particles live, then it is a postulate of quantum mechanics that a generic state vector describing the combined system lives in a space

$$\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B.$$

The symbol \otimes refers to a tensor product, a mathematical operation that combines two vector (Hilbert) spaces to produce another one.

The meaning of the tensor product is more easily understood in terms of explicit basis vectors, in the case of discrete vector spaces. For this purpose, let us assume that \mathcal{H}_A is spanned by a set of basis vectors $\{|\mu_1\rangle, |\mu_2\rangle, |\mu_3\rangle, \dots, |\mu_{n_A}\rangle\}$ and that \mathcal{H}_B is spanned by a set of other basis vectors $\{|\nu_1\rangle, |\nu_2\rangle, |\nu_3\rangle, \dots, |\nu_{n_B}\rangle\}$. Then, the vector space \mathcal{H}_{AB} is by construction spanned by basis vectors consisting of all the pairwise combinations of the basis vectors of A and B , and the basis states of the composite system are written as

$$|\mu_i\rangle \otimes |\nu_j\rangle \quad \forall i \in [1, n_A], j \in [1, n_B].$$

We can see that the total number of basis states for the composite system is $n_A \times n_B$. All quantum states in \mathcal{H}_{AB} can be written as linear combinations of the composite basis states:

$$|\psi_{AB}\rangle = \sum_{ij} c_{ij} |\mu_i\rangle \otimes |\nu_j\rangle = \sum_{ij} c_{ij} |\lambda_{ij}\rangle$$

with c_{ij} being some complex coefficients, and where we have defined the basis vectors $|\lambda_{ij}\rangle \equiv |\mu_i\rangle \otimes |\nu_j\rangle$.

In order to work with these states, we need to know how to perform inner products between states belonging to the tensor product space \mathcal{H}_{AB} . The inner product between two basis states is defined as

$$\langle \lambda_{ij} | \lambda_{kl} \rangle = (\langle \mu_i | \otimes \langle \nu_j |) (|\mu_k\rangle \otimes |\nu_l\rangle) \equiv \langle \mu_i | \mu_k \rangle \langle \nu_j | \nu_l \rangle = \delta_{ik} \delta_{jl}.$$

This definition is relatively easy to understand: the inner product is obtained as the product of the elementary (A or B) inner products. Also, it shows that the basis states of the composite system are orthogonal by construction. As a consequence, the inner product between two generic states of the composite system

$$|\phi\rangle = \sum_{ij} b_{ij} |\lambda_{ij}\rangle, \quad |\psi\rangle = \sum_{ij} c_{ij} |\lambda_{ij}\rangle,$$

reads

$$\langle \phi | \psi \rangle = \sum_{ij} \sum_{kl} b_{ij}^* c_{kl} \langle \lambda_{ij} | \lambda_{kl} \rangle = \sum_{ij} b_{ij}^* c_{ij}.$$

We also see that the basis states of the composite system satisfy the closure relation:

$$\sum_{ij} |\lambda_{ij}\rangle \langle \lambda_{ij}| = I.$$

Formally speaking, the tensor product satisfies all the intuitive properties you might expect from a product. For example, given a scalar a and two arbitrary vectors $|v\rangle \in \mathcal{H}_A$ and $|w\rangle \in \mathcal{H}_B$, we have

$$a(|v\rangle \otimes |w\rangle) = (a|v\rangle) \otimes |w\rangle = |v\rangle \otimes (a|w\rangle).$$

It is also distributive:

$$(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle,$$

$$|v\rangle \otimes (|w_1\rangle + |w_2\rangle) = |v\rangle \otimes |w_1\rangle + |v\rangle \otimes |w_2\rangle.$$

Finally, the construction of the product state space can be generalized from the case of two particles to the case of many particles, A, B, C, ..., since the composite vector (Hilbert) space will be simply given by the tensor product of the individual state spaces

$$\mathcal{H}_{ABC\dots} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C \dots,$$

and in general, the resulting space will have a large dimension when we have many particles, since it is the product of the size of the individual dimensions

$$n_{ABC\dots} = n_A \times n_B \times n_C \times \dots .$$

2.1.1 Example: Two Qubits

Let us see an example of this formalism in the case of two qubits, i.e., for that case that \mathcal{H}_A and \mathcal{H}_B are both vector spaces of dimension 2. As basis states of the individual spins, we take the eigenkets of σ_Z , thus the resulting tensor product space is given by the 4 states

$$\begin{aligned}|1\rangle_{AB} &= |0\rangle_A \otimes |0\rangle_B \\|2\rangle_{AB} &= |0\rangle_A \otimes |1\rangle_B \\|3\rangle_{AB} &= |1\rangle_A \otimes |0\rangle_B \\|4\rangle_{AB} &= |1\rangle_A \otimes |1\rangle_B,\end{aligned}$$

and a generic state of two qubits is written as

$$|\psi\rangle_{AB} = \sum_{k=1}^4 c_k |k\rangle_{AB},$$

where, as always, by definition

$$c_k = \langle k|\psi\rangle.$$

For example, take

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |0\rangle_B) = \frac{1}{\sqrt{2}} (|2\rangle - |3\rangle).$$

We can easily check that this is a physically valid state, since it is correctly normalized:

$$\langle\psi|\psi\rangle = \frac{1}{2} (\langle 2|2\rangle + \langle 3|3\rangle) = 1.$$

A note on notation! Writing out the composite state of $|\psi\rangle$ and $|\phi\rangle$ as $|\psi\rangle \otimes |\phi\rangle$ can feel a bit cumbersome. So we often don't bother to explicitly write out the \otimes and instead write $|\psi\rangle|\phi\rangle$ or just $|\psi\phi\rangle$. That is,

- $|\psi\rangle \otimes |\phi\rangle$
- $|\psi\rangle|\phi\rangle$
- $|\psi, \phi\rangle$
- $|\psi\phi\rangle$

all mean the same thing! And you need to become comfortable switching between these notations.

2.2 Operators

So far, we have introduced the state space for a system of many particles, but we haven't talked about the operators that act on this space, and how they are related to the measurement process. If we have two operators T_A and T_B acting on the individual spaces, the resulting operator that acts on the product space is also written as a tensor product:

$$T_{AB} = T_A \otimes T_B,$$

where the resulting operator T_{AB} now acts on vectors in the space $H_A \otimes \mathcal{H}_B$. The composite operator acts as follows:

$$T_{AB}|\lambda_{ij}\rangle = (T_A \otimes T_B)(|\mu_i\rangle \otimes |\nu_j\rangle) \equiv (T_A|\mu_i\rangle) \otimes (T_B|\nu_j\rangle),$$

thus, quite naturally, each of the two operators in the product acts on the kets that belong to the respective vector spaces. As a special case, notice that if we are given only an operator that acts on one of the two subsystems, this is to be understood as

$$T'_{AB} = T_A \otimes I_B$$

if only T_A is given, and where I_B is the identity operator for subsystem B. Similarly,

$$T''_{AB} = I_A \otimes T_B,$$

if only T_B is given. As a result, it is easy to see that these two operators, acting non-trivially only on one of the two subsystems, commute since:

$$\begin{aligned} T''_{AB}T'_{AB}|\lambda_{ij}\rangle &= (I_A \otimes T_B)(T_A \otimes I_B)(|\mu_i\rangle \otimes |\nu_j\rangle) = (T_A|\mu_i\rangle) \otimes (T_B|\nu_j\rangle), \\ T'_{AB}T''_{AB}|\lambda_{ij}\rangle &= (T_A \otimes I_B)(I_A \otimes T_B)(|\mu_i\rangle \otimes |\nu_j\rangle) = (T_A|\mu_i\rangle) \otimes (T_B|\nu_j\rangle), \end{aligned}$$

thus

$$[T_A \otimes I_B, I_A \otimes T_B] = 0.$$

2.2.1 Example: Spin $\frac{1}{2}$ Operators

Let us give again an example for two qubits A and B. For concreteness, let's now suppose that the qubit represents a spin 1/2 particle. We write the spin z operator on the two individual systems as¹ $S_A^{(z)} = \frac{1}{2}Z_A$ where Z_A is the standard Pauli operator on system A such that

$$\begin{aligned} S_A^{(z)}|m\rangle_A &= m|m\rangle_A, \\ S_B^{(z)}|m'\rangle_B &= m'|m'\rangle_B, \end{aligned}$$

for $m, m' = \pm\frac{1}{2}$. It is then natural to define the total spin as the sum of these two operators. In order to do so, however, we need to recall that these operators are acting on different spaces, thus before summing them up we need to “upgrade” them to be good operators for the composite vector space. The total $S_{AB}^{(z)}$ operator reads:

$$S_{AB}^{(z)} = S_A^{(z)} \otimes I_B + I_A \otimes S_B^{(z)}.$$

It is then straightforward to see how this operator acts on a general state. For example, if we take a basis vector for the composite system, we have

$$\begin{aligned} S_{AB}^{(z)}(|m\rangle_A \otimes |m'\rangle_B) &= \left(S_A^{(z)} \otimes I_B + I_A \otimes S_B^{(z)}\right)(|m\rangle_A \otimes |m'\rangle_B) \\ &= \left(S_A^{(z)}|m\rangle_A\right) \otimes |m'\rangle_B + |m\rangle_A \otimes \left(S_B^{(z)}|m'\rangle_B\right) \\ &= m(|m\rangle_A \otimes |m'\rangle_B) + m'(|m\rangle_A \otimes |m'\rangle_B) \\ &= (m + m')(|m\rangle_A \otimes |m'\rangle_B). \end{aligned} \tag{2.1}$$

thus the composite state is an eigenket of the total spin, with an eigenvalue $(m + m')$ that is the sum of the individual eigenvalues.

Remember that a qubit can represent all sorts of different systems and so this maths applies more broadly. For example, if the qubit represents two energy levels of an atom with a Hamiltonian $H_A = \omega Z_A$ then $H_A \otimes I_B + I_A \otimes H_B$ would allow us to compute the total energy of two atoms.

¹Remember, we work in nice tidy units such that $\hbar = 1$

A note on notation! In the case of a composite operator $H_A \otimes H_B$ you *cannot* drop the \otimes (this is because $H_A H_B$ looks like you are multiplying the matrices) but it's common to be lazy and drop identity operations. That is, write Z_A instead of $Z_A \otimes I_B$ or $Z \otimes I$. So, for example,

- $Z_A \otimes I_B + I_A \otimes Z_B$
- $Z \otimes I + I \otimes Z$
- $Z_A + Z_B$

mean the same thing. Again, you'll need to get comfortable switching notations.

2.2.2 Explicit matrix and vector representation of the tensor product

Generally you should try and stick to bracket notation - this is typically simpler than writing out explicit matrix descriptions of states of multi-qubit systems. But sometimes it is helpful to visualise the composite vectors/operators explicitly. The basic idea behind the tensor product is to multiply a copy of the second matrix by each element of the first matrix in turn and so we have

$$\begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a\alpha \\ a\beta \\ b\alpha \\ b\beta \end{pmatrix}.$$

Note that, for example, the matrix representation of $|10\rangle$ is

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix},$$

exactly what would be naively expected. An equivalent approach can be used for operators, e.g.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}.$$

2.3 Measurements

For the single-component case, recall that the measurement process in quantum mechanics works as follows. Consider a measurement operator \hat{A} with eigenkets $|A_i\rangle$ and corresponding eigenvalues a_i . Without loss of generality, an arbitrary state $|\psi\rangle$ can be expressed in this basis:

$$|\psi\rangle = \sum_i \beta_i |A_i\rangle, \quad \text{where} \quad \beta_i = \langle A_i | \psi \rangle \in \mathbb{C}.$$

Measuring $|\psi\rangle$ under the operator \hat{A} collapses the state into eigenket $|A_i\rangle$ with probability $P_i = |\beta_i|^2$, producing measurement result a_i .

In the case of a composite system, there are two kinds of measurements we can perform.

2.3.1 Global Measurement

In the first case, we measure an operator $T = T_A \otimes T_B$, thus intrinsically defined to act on the joint vector space, and in this sense corresponding to a measurement of the entire system AB . Similarly to the standard situation, then we can diagonalize the operator:

$$T|T_i\rangle = t_i|T_i\rangle,$$

in such a way that (assuming the operator has a non-degenerate spectrum)

$$|\psi\rangle = \sum_i |T_i\rangle \langle T_i| \psi\rangle,$$

thus a measurement will yield the state $|T_i\rangle$ with probability $P_i = |\langle T_i|\psi\rangle|^2$.

2.3.2 Partial Measurement

In the second case, we can measure an operator that is defined only on one of the two subsystems, for example T_A . In this sense, we are performing a partial measurement of the system, since we measure only the properties of one subpart, ignoring the rest of the system. We can rewrite a generic state of two particles as

$$|\psi\rangle = \sum_{ij} c_{ij} |T_{Ai}\rangle \otimes |T_{Bj}\rangle = \sum_i |T_{Ai}\rangle \otimes \left(\sum_j c_{ij} |T_{Bj}\rangle \right) = \sum_i |T_{Ai}\rangle \otimes |\phi_i^B\rangle,$$

where we have defined

$$|\phi_i^B\rangle = \sum_j c_{ij} |T_{Bj}\rangle.$$

This expression then allows us to get a better intuition about what happens when we measure only the first subsystem (A). In that case, assuming that we measure the operator T_A with eigenvalues t_{Ai} , it is postulated that after the measurement the system collapses into

$$|\psi'_i\rangle \propto |T_{Ai}\rangle \otimes |\phi_i^B\rangle.$$

The probability for this to happen is postulated to be

$$P_i = \langle \psi_i | (|T_{Ai}\rangle \langle T_{Ai}| \otimes I_B) | \psi_i \rangle$$

which is a generalization of what we have seen for the single particle case. That is, you're just measuring the projector on system A and doing the trivial identity measurement on system B. Let's see what this evaluates to:

$$P_i = \langle \psi_i | (|T_{Ai}\rangle \langle T_{Ai}| \otimes I_B) | \psi_i \rangle = \langle \phi_i^B | \phi_i^B \rangle = \sum_j c_{ij}^* \langle T_{Bj} | \sum_k c_{ik} | T_{Bk} \rangle = \sum_{jk} \delta_{jk} c_{ij}^* c_{ik} = \sum_j |c_{ij}|^2,$$

We can also explicitly compute the normalization of the state after the measurement, which reads

$$|\psi'_i\rangle = \frac{1}{\sqrt{\langle T_{Ai}|T_{Ai}\rangle \langle \phi_i^B|\phi_i^B\rangle}} |T_{Ai}\rangle \otimes |\phi_i^B\rangle = \frac{1}{\sqrt{\sum_j |c_{ij}|^2}} |T_{Ai}\rangle \otimes |\phi_i^B\rangle = \sum_j \frac{c_{ij}}{\sqrt{P_i}} |T_{Ai}\rangle \otimes |T_{Bj}\rangle.$$

2.3.3 Example: Qubit Measurements

Let us consider again an example for two qubits. We consider the state

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |0\rangle_B),$$

and let us suppose that we are interested in measuring Z on system A. As always, this measurement can yield only two possible outcomes, 1 and -1 .

The probability of obtaining $+1$ on the first qubit is the sum of i. the probability that the first qubit is in the $+1$ state ($|0\rangle$) and the second qubit is in the $+1$ state ($|0\rangle$) and ii. the probability that the first qubit is in the $+1$ state ($|0\rangle$) and the second qubit is in the -1 state ($|1\rangle$). That is, $P_0 = |c_{00}|^2 + |c_{01}|^2 = \frac{1}{2}$. On getting this outcome, the system then collapses into the normalized state $|0\rangle_A \otimes |1\rangle_B$.

In the other case, i.e., if we get the -1 outcome, it is easy to see that the system collapses into $|1\rangle_A \otimes |0\rangle_B$ also with probability $P_- = \frac{1}{2}$.

2.4 Entanglement

In the previous discussion, we have seen that the measurement of one part of the system directly influences the outcomes of a measurement of the other part. This is one manifestation of what is called quantum “entanglement”. More specifically, a state of two systems is said to be entangled if its coefficients cannot be written as the product of two independent coefficients.

If instead, the global wave function can be written as the product of two wave functions corresponding to the subsystems A and B, then we say that the system is “separable”. For a separable state, the wave function then reads

$$|\psi\rangle_{\text{sep}} = \sum_{ij} c_{ij} |T_{Ai}\rangle \otimes |T_{Bj}\rangle = \sum_{ij} c_i^{(A)} c_j^{(B)} |T_{Ai}\rangle \otimes |T_{Bj}\rangle = \left(\sum_i c_i^{(A)} |T_{Ai}\rangle \right) \otimes \left(\sum_j c_j^{(B)} |T_{Bj}\rangle \right) = |\psi\rangle \otimes |\phi\rangle.$$

If a system is separable, we also immediately see that a measurement performed on one part does not affect the other one. For example, if we measure T_A , the system will collapse into some state

$$|\psi_i\rangle = |T_{Ai}\rangle \otimes |\phi\rangle,$$

with probability $|c_i^{(A)}|^2$, but the resulting state for the subsystem B will always be $|\phi\rangle$, independently of the outcome of the measurement on A.

To explicitly determine whether a state is separable or entangled, we have to check whether the matrix of coefficients factorizes or not, namely if the condition $c_{ij} = c_i^{(A)} c_j^{(B)}$ is verified or not. For example, for two qubits, the condition of separability reads

$$\begin{aligned} c_{00} &= c_0^{(A)} c_0^{(B)}, \\ c_{01} &= c_0^{(A)} c_1^{(B)}, \\ c_{10} &= c_1^{(A)} c_0^{(B)}, \\ c_{11} &= c_1^{(A)} c_1^{(B)}, \end{aligned}$$

These conditions are satisfied if

$$c_{00}c_{11} - c_{01}c_{10} = c_0^{(A)} c_0^{(B)} c_1^{(A)} c_1^{(B)} - c_0^{(A)} c_1^{(B)} c_1^{(A)} c_0^{(B)} = 0,$$

Equivalently, we can write $\det \hat{c} = 0$ where we have conveniently arranged the coefficients c_{ij} in a matrix:

$$\hat{c} = \begin{pmatrix} c_{00} & c_{01} \\ c_{10} & c_{11} \end{pmatrix}.$$

Thus, if the determinant of the coefficient matrix for the state in the composite basis is zero, then the state is separable.

For example, our state

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |0\rangle_B),$$

has a coefficient matrix

$$\hat{c} = \begin{pmatrix} 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 \end{pmatrix},$$

whose determinant is non-zero, and it is thus an entangled state.

Right, that's the basic mathematical formalism you need to be familiar with in order to study the behaviour of composite systems. Let's move onto something more exciting and look at the consequences of this formalism.

2.5 The Quantum Eraser

The two slit experiment is often the first thought experiment a student encounters when studying quantum mechanics. Here we will explore some variants to it that highlight the curious interplay between coherence, interference and entanglement.

Standard two slit experiment (1): Let us start with the standard two slit experiment. We suppose that single horizontally polarized photons impinge on a screen with two slits and hit a second screen placed behind the first (see Fig. 2.1a)). Although the photons hit the screen one by one we see an interference pattern on the screen behind.

Standard two slit experiment (2): We now suppose that a 90 degrees polarisation shifter is placed behind one of the slits (so that the light coming through it now is vertically polarized) but otherwise leave the set up unchanged (Fig. 2.1b). *What happens this time?*

In this case the interference pattern does not arise. Instead we see a simple mixture of the two patterns we would get if the photons went either through the top or the bottom slit as shown in Fig. 2.1b. This is because if we measured each photons polarisation then we would be able to determine if it went through the top or the bottom slit. Even if we do not in fact check which slit we went through this information is enough to destroy the interference pattern.

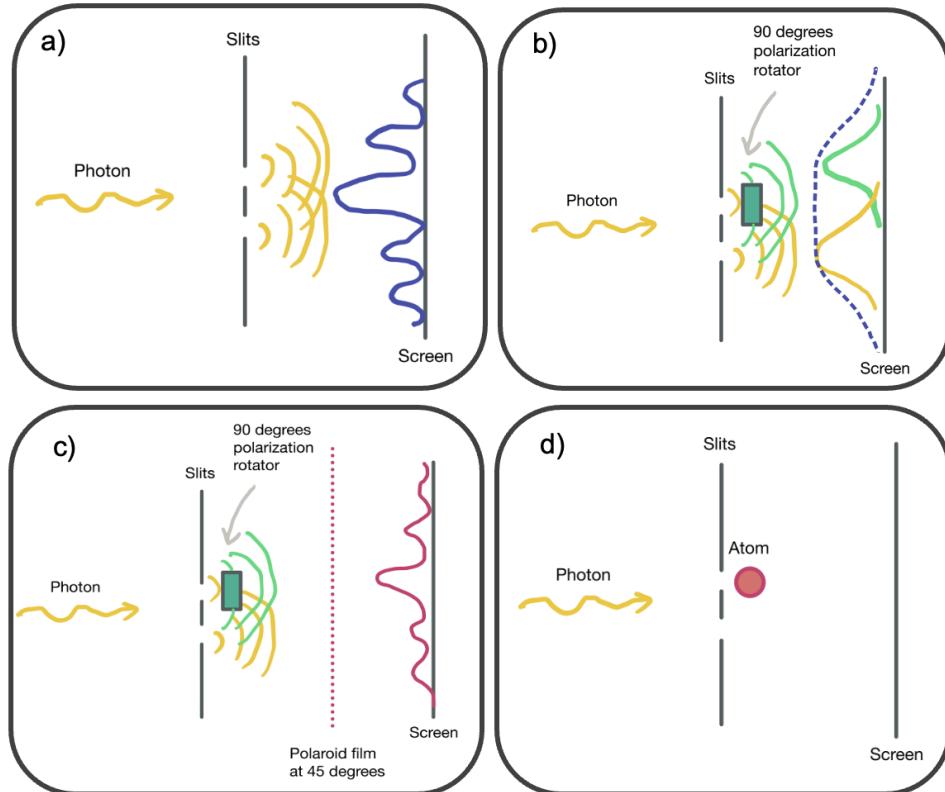


Figure 2.1: Quantum eraser experiments

Here is how to understand this mathematically. Let $\psi_1(x, t)$ be the wavefunction of a photon

emerging from the first slit, and $\psi_2(x, t)$ be that from the second slit. Let the polarisation of a photon be labelled by a H (horizontal) or V (vertical) substate, so that a horizontally-polarised photon emerging from the first slit is written as $|\psi_1, H\rangle = |\psi_1\rangle \otimes |H\rangle$. In the original two slit experiment the state of the photon after going through the two slits is of the form

$$|\Psi(x, t)\rangle = \frac{1}{\sqrt{2}}(|\psi_1(x, t)\rangle + |\psi_2(x, t)\rangle) \otimes |H\rangle \quad (2.2)$$

and on measuring the position of the particle at the second screen we get the probability density

$$\begin{aligned} P(x) &= \langle \Psi(x, t) | (|x\rangle \langle x| \otimes I) |\Psi(x, t)\rangle \\ &= \frac{1}{2} (\langle \psi_1(x, t) | + \langle \psi_2(x, t) |) |x\rangle \langle x| (\langle \psi_1(x, t) | + \langle \psi_2(x, t) |) \langle H | H \rangle \\ &= \frac{1}{2} \langle \psi_1(x, t) + \psi_2(x, t) | x\rangle \langle x | \psi_1(x, t) + \psi_2(x, t) \rangle \\ &= |\psi_1(x, t) + \psi_2(x, t)|^2 / 2. \end{aligned} \quad (2.3)$$

In the second case the state of the photon after passing through the two slits and the polarization shifter is of the form

$$|\Phi(x, t)\rangle = \frac{1}{\sqrt{2}}(|\psi_1(x, t)\rangle \otimes |V\rangle + |\psi_2(x, t)\rangle \otimes |H\rangle) \quad (2.4)$$

and so the probability density function of the photons hitting the screen is

$$\begin{aligned} P(x) &= \langle \Phi(x, t) | (|x\rangle \langle x| \otimes I) |\Phi(x, t)\rangle \\ &= \langle \psi_1(x, t) | x\rangle \langle x | \psi_1(x, t) \rangle \langle V | V \rangle + \langle \psi_2(x, t) | x\rangle \langle x | \psi_2(x, t) \rangle \langle H | H \rangle \\ &= (|\psi_1(x, t)|^2 + |\psi_2(x, t)|^2) / 2 \end{aligned} \quad (2.5)$$

That is we have a probabilistic mixture because the cross terms, the interference terms, have vanished because $\langle H | V \rangle = 0$.

Quantum eraser: We now suppose that as well as the 90 degrees polarisation shifter behind one of the slits we add a polaroid sheet at 45 degrees, which only outputs light in the state $|\nearrow\rangle = \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle)$. This is shown in Fig. 2.1c). *What happens this time?*

We see the interference pattern again but at half the intensity. Why? The light coming through the top slit is vertically polarized and the photons coming through the bottom slit is horizontally polarized. The polaroid sheet effectively measures the polarization degree of freedom in the $\{|\nearrow\rangle, |\swarrow\rangle\}$ basis where $|\nearrow\rangle = \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle)$ and $|\swarrow\rangle = \frac{1}{\sqrt{2}}(|H\rangle - |V\rangle)$, and only lets through measurement outcomes that project the light to $|\nearrow\rangle$. Now both H and V photons have a 50% chance of being measured to be $|\nearrow\rangle$ and so the sheet lets through only half the photons. But crucially all the photons (both the ones from the upper slit and the lower slit) that get let through are in the $|\nearrow\rangle$ state and so it's impossible to determine which slit any photon went through.

Lets see how this looks mathematically. First let's rewrite the Φ state in the $\{|\nearrow\rangle, |\swarrow\rangle\}$ basis,

$$\begin{aligned} |\Phi(x, t)\rangle &= \frac{1}{\sqrt{2}}(|\psi_1(x, t)\rangle \otimes |V\rangle + |\psi_2(x, t)\rangle \otimes |H\rangle) \\ &= \frac{1}{2} (|\psi_1(x, t)\rangle \otimes (|\nearrow\rangle - |\swarrow\rangle) + |\psi_2(x, t)\rangle \otimes (|\nearrow\rangle + |\swarrow\rangle)) \end{aligned} \quad (2.6)$$

After going through the filter the state becomes

$$|\Phi(x, t)'\rangle = \frac{1}{2}(|\psi_1(x, t)\rangle \otimes |\nearrow\rangle + |\psi_2(x, t)\rangle \otimes |\nearrow\rangle) \quad (2.7)$$

This is of the same form as Eq. (2.2) except i. we have an extra factor of $1/\sqrt{2}$ out the front and ii. all the photons are now in the \nearrow polarization state instead of the H state. It follows that the interference pattern is the same as Eq. (2.3) but with an extra factor of $1/2$ out the front. That is we see the interference pattern but with the intensity reduced by $1/2$ as claimed:

$$P(x) = |\psi_1(x, t) + \psi_2(x, t)|^2/4. \quad (2.8)$$

Exercise: What changes if the polaroid sheet only lets through $|\swarrow\rangle = \frac{1}{\sqrt{2}}(|H\rangle - |V\rangle)$ photons?

Delayed quantum eraser: Let's go back to the simple two slit experiment and this time place an atom behind one of the slits as sketched in Fig. 2.1d). Now this would be hard to arrange in practise but let us suppose that the photon that passes the atom flips the spin of an outer electron from $|\downarrow\rangle$ to $|\uparrow\rangle$ but is not absorbed². (For each photon that we send through the two slit experiment we use a new atom and store the previous in a quantum memory). What happens in this case?

Concretely, after passing through the two slits and past the atom the system is in the state:

$$\begin{aligned} |\Phi(x, t)\rangle &= \frac{1}{\sqrt{2}}(|\psi_1(x, t)\rangle \otimes |\uparrow\rangle + |\psi_2(x, t)\rangle \otimes |\downarrow\rangle) \\ &= \frac{1}{2}(|\psi_1(x, t)\rangle \otimes (|\nearrow\rangle - |\swarrow\rangle) + |\psi_2(x, t)\rangle \otimes (|\nearrow\rangle + |\swarrow\rangle)) \end{aligned} \quad (2.9)$$

Then we can read off the expected interference patterns in the different cases:

- **Measure in the Z basis:**

If we obtain $|\uparrow\rangle$ then the pattern is $|\psi_1(x, t)|^2$.
If we obtain $|\downarrow\rangle$ then the pattern is $|\psi_2(x, t)|^2$.

- **Measure in the X basis:**

If we obtain $|\nearrow\rangle$ then the interference pattern is $\frac{1}{2}|\psi_1(x, t) + \psi_2(x, t)|^2$.
If we obtain $|\swarrow\rangle$ then the interference pattern is $\frac{1}{2}|\psi_1(x, t) - \psi_2(x, t)|^2$.

So it would seem that the interference pattern we observe depends on the basis that the atom is measured in. If the atom is measured in basis $\{|\uparrow\rangle, |\downarrow\rangle\}$ then we end up with version 2 of the standard two slit experiment where we know which slit the photon went through. However, if we measure in the $\{|\nearrow\rangle, |\swarrow\rangle\}$ basis we end up with the quantum eraser version, and the interference reappears (but we do not lose half the photons this time).

The interference pattern depends on the basis that the atom is measured in - something we subjectively choose. And more puzzling still, this is true even if the atoms are taken far away before being measured! So a natural thought might be - can we use this to signal?

[Some blank space to encourage you to think about this before reading the answer]

²An experiment of this spirit but not of this exact form has been conducted. Take a look at the wikipedia page on the delayed quantum eraser to learn more.

2.6 No signalling

Ok, so could we use the delayed eraser setup for a superluminal signal? On the surface it might look like we should be able to. Suppose Bob can perform measurements on the atom, and Alice watches the screen subsequently impacted by photons. They try and signal (Bob is the sender, Alice is the receiver) using the code that an interference pattern corresponds to the bit ‘0’ and no interference corresponds to the bit ‘1’. Then, it would seem that Bob could measure Z or X to send ‘0’ or ‘1’ to Alice and this would be true no matter how far away he is from Alice, seemingly allowing superluminal signalling. However, if Bob could signal to Alice in this way it would violate special relativity. So what breaks down?

Well the key thing to note is that the interference pattern depends on not just the measurement, but the measurement *outcome*. Say the atom is measured in the Z basis. Bob will obtain $|\uparrow\rangle$ and $|\downarrow\rangle$ with equal probabilities (because the photon is equally likely to go through either slits) and so the resulting pattern on the screen is

$$p(x) = (|\psi_1(x, t)|^2 + |\psi_2(x, t)|^2)/2. \quad (2.10)$$

Similarly, if Bob measures in the X basis then the states $|+\rangle$ and $|-\rangle$ are obtained with equal probabilities and so the resulting pattern is

$$p(x) = (|\psi_1(x, t) + \psi_2(x, t)|^2 + |\psi_1(x, t) - \psi_2(x, t)|^2)/2 = (|\psi_1(x, t)|^2 + |\psi_2(x, t)|^2)/2. \quad (2.11)$$

That is, the pattern is the same in either case!

In order to be able to communicate with this set up Bob would need to tell Alice for each photon that went through the setup which outcome he obtained. She could then mark the photons according to the outcome obtained and determine whether or not an interference pattern was observed for measurement outcomes of the same sort (corresponding to X measurement) or no interference pattern (corresponding to Z measurement). However, this requires communication which defeats the purpose of the purported signalling protocol.

Ok, so this quantum eraser protocol doesn’t work. Could another more general protocol work? Suppose Alice and Bob each have a qubit of a generic entangled state $|\Psi\rangle$ that they want to use to try and signal. Suppose Bob considers performing two different measurements upon his qubit; $M^{(B1)}$ which has outcomes corresponding to projectors $\Pi_0^{(B1)}$ and $\Pi_1^{(B1)}$, and $M^{(B2)}$ which corresponds to projectors $\Pi_0^{(B2)}$ and $\Pi_1^{(B2)}$. In words: the superscript indicates which measurement axis he chose, and the subscript indicates what outcome he obtained therefrom. Bob intends to signal a bit ‘0’ or ‘1’ to Alice via his choice of measurement. Suppose these measurements collapse Alice’s state as follows:

1. **Bob measures $M^{(B1)}$, obtaining the outcome described by $\Pi_i^{(B1)}$:**
Alice’s qubit enters state $|\psi_i\rangle$ with probability p_i .
2. **Bob measures $M^{(B2)}$, obtaining the outcome described by $\Pi_i^{(B2)}$:**
Alice’s qubit enters state $|\phi_i\rangle$ with probability q_i .

Then in order for Alice to infer whether Bob measured $M^{(B1)}$ or $M^{(B2)}$, she must perform some measurement $M^{(A)}$ that, at the very least³, has different outcome probabilities depending on

³What else would be required? How can Alice determine the probabilities of her measurement outcomes?

Bob's measurement. Let $\Pi^{(A)}$ be the projector of one of her possible measurement outcomes (it's not necessary to think about the other outcome). Alice requires that

$$P(\Pi^{(A)}|M^{(B1)}) \neq P(\Pi^{(A)}|M^{(B2)}) \quad (2.12)$$

$$\implies \sum_i p_i \langle \psi_i | \Pi^{(A)} | \psi_i \rangle \neq \sum_i q_i \langle \phi_i | \Pi^{(A)} | \phi_i \rangle. \quad (2.13)$$

It turns out that it is impossible to find such an operator. That is, for any choice of $\Pi^{(A)}$, the above expression is a strict *equality*. It follows that it is impossible to use an entangled state to communicate faster than the speed of light. For an example of this see this chapter's problem sheet. We will also demonstrate this more rigorously when we cover reduced states in a few lectures time.

2.7 Non-locality and Bell inequalities

In this section we will explore how quantum entanglement can produce correlations that cannot be explained by classical observers that pre-share classical correlated data/randomness. More concretely, we will see how Bell's theorem, and experimental verifications of it, imply that not only quantum physics but also our world is inherently 'non-local'. I will start this section with an unconventional way of framing the Bell's Theorem that I have shamelessly borrowed from Terry Rudolph.

2.7.1 Quantum Psychics

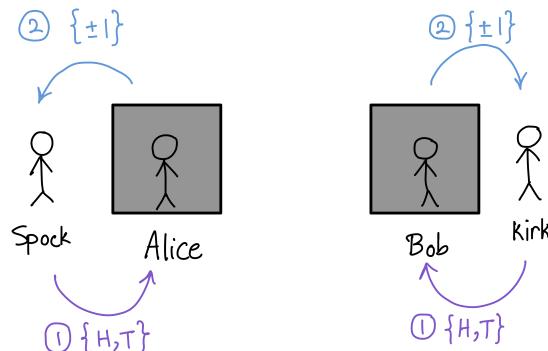


Figure 2.2: The Quantum Psychics Game.

Suppose there were two friends Alice and Bob who claimed to share a psychic connection. How could you go about testing it? Let's put Alice and Bob into isolated rooms with no way they can pass any messages between them. Outside Alice's room is a sceptic, let's call him Spock, who tosses a coin and tells Alice the outcome. Outside Bob's room is another sceptic, Kirk, who similarly tosses a coin and tells Bob the outcome. Alice and Bob must then respond with either yes 'Y' or no 'N'. What can Spock and Kirk ask Alice and Bob to do to try to determine if they are psychic? They consider the following tests...

Test 1: Every time Alice and Bob get told the same coin outcome they must give the same answer, every time they get different outcomes they must give different answers.

This clearly is a flawed test. Alice and Bob can pass it simply by deciding in advance that they will both say yes to heads and no to tails.

Realising this, the Spock and Kirk instead toy with proposing an alternative test...

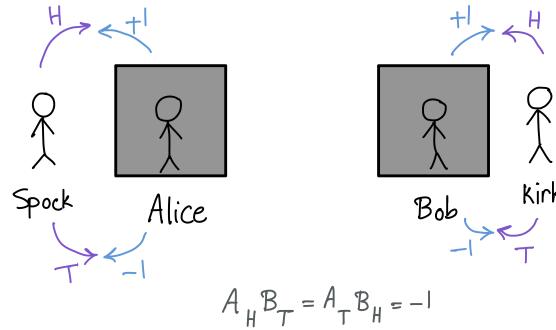


Figure 2.3: The Quantum Psychics Game: Test 1.

Test 2: Every time Alice and Bob get told the same coin outcome they must give opposite answers, every time they get different flips they must give the same answers.

On further thought this test is equally flawed. Alice and Bob agree in advance that they will give different outcomes. That is, Alice says yes to heads and no to tails but Bob does the converse.

Instead the Spock and Kirk propose the following test.

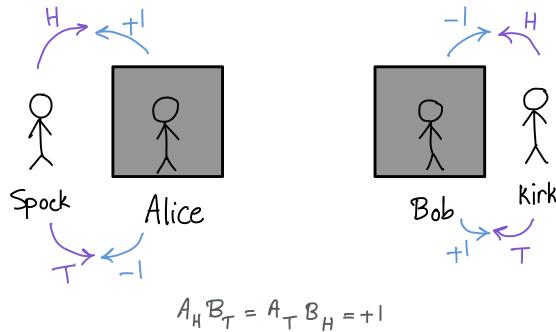


Figure 2.4: The Quantum Psychics Game: Test 2.

Test 3: Every time Alice and Bob get told 'H' they must give opposite answers, but otherwise they must give the same answer.

Now if you play around with this you'll see that there is no strategy that Alice and Bob can cook up in advance in order to fool the sceptics. Try this! After playing with a few examples, the easiest way to definitively prove it to yourself is to represent the binary answers 'Y' and 'N'

by +1 and -1 respectively. Then the rules of the game can be formalized as trying to find an assignment of A_H , A_T , B_H and B_T such that

$$\begin{aligned} A_H B_H &= -1 \\ A_H B_T &= 1 \\ A_T B_H &= 1 \\ A_T B_T &= 1 \end{aligned} \tag{2.14}$$

Multiplying the left hand side of these four equations together gives $A_H^2 A_T^2 B_H^2 B_T^2$ which has to be positive. However, multiplying the right hand side together gives -1. Hence there cannot be an assignment of A_H and B_H that satisfies all the rules of the test and as such this test is a viable means to testing if Alice and Bob are psychic.

In fact, the maximum number of rules that can be satisfied in Eq. 2.14 for any strategy taken by Alice and Bob is 3. (Convince yourself of this!) That is, at best Alice and Bob can pick a strategy that will lead to them fooling the sceptics for 3 out of the 4 possible coin toss combinations:

$$P_{\text{win}} \leq 3/4. \tag{2.15}$$

This is an example of a Bell inequality. If Alice and Bob reliably can win with a probability significantly greater than 3/4 then it would seem reasonable to assume that they really are ‘psychic’ (by which I mean, there are correlations that cannot be explained by previously decided classical scheme for correlating their answers).

However, if Alice and Bob share entangled Bell states, $|\phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, then they can use the non-classical correlations stored in the Bell state to pass the sceptics test. Alice and Bob’s strategy to do so is as follows.

- If Alice gets told ‘H’ she measures in the Z basis and says ‘Y’ if she gets ‘ $|0\rangle$ ’ and ‘N’ if she gets ‘ $|1\rangle$ ’.
- If Alice gets told ‘T’ she measures in the X basis and says ‘Y’ if she gets ‘ $|+\rangle$ ’ and ‘N’ if she gets ‘ $|-\rangle$ ’.
- If Bob gets told ‘H’ he measures in the basis

$$\{|h\rangle = \sin(\pi/8)|0\rangle + \cos(\pi/8)|1\rangle, |\bar{h}\rangle = \cos(\pi/8)|0\rangle - \sin(\pi/8)|1\rangle\} \tag{2.16}$$

and says ‘Y’ if he gets ‘ $|h\rangle$ ’ and ‘N’ if she gets ‘ $|\bar{h}\rangle$ ’.

- If Bob gets told ‘T’ he measures in the basis

$$\{|t\rangle = \cos(\pi/8)|0\rangle + \sin(\pi/8)|1\rangle, |\bar{t}\rangle = \sin(\pi/8)|0\rangle - \cos(\pi/8)|1\rangle\} \tag{2.17}$$

and says ‘Y’ if he gets ‘ $|t\rangle$ ’ and ‘N’ if she gets ‘ $|\bar{t}\rangle$ ’.

Alice and Bob can beat test 3 with probability

$$P_{\text{Quantum}} = \cos(\pi/8)^2 = \frac{2 + \sqrt{2}}{4} \approx 0.854. \tag{2.18}$$

Exercise: Check this!

However, crucially this is an intriguing form of telepathy. They can use it to cheat the sceptics test but (as we saw before and you will see in the problem sheet) they cannot use it to signal. So is it useful for anything? In fact, it proves useful in quantum cryptography (but that is beyond the remit of this course).

Terry's quantum psychics version of the Bell inequality is entirely equivalent to a more conventional framing of the Bell's theorem known as the CHSH inequality. Rather than asking what is the probability of Alice and Bob winning test 3, the CHSH inequality is a bound on the sum of the expectation values of the product of Alice and Bob's answers for each of the different possible combinations of outcomes. That is, a bound on the correlation coefficient

$$C := \langle A_T B_T \rangle + \langle A_H B_T \rangle + \langle A_T B_H \rangle - \langle A_H B_H \rangle \quad (2.19)$$

where $A_j B_k$ are placeholders for Alice and Bob's measurement outcomes when told the toss outcome was j and k respectively. For example, A_H and B_H are placeholders when they are both told H and so

$$\begin{aligned} \langle A_H B_H \rangle &= (-1) \times P(A_H = 1, B_H = -1|H, H) + (-1) \times P(A_H = -1, B_H = 1|H, H) \\ &\quad + (+1) \times P(A_H = 1, B_H = 1|H, H) + (+1) \times P(A_H = -1, B_H = -1|H, H). \end{aligned} \quad (2.20)$$

and similarly for the other expectations values. We want to relate this to probability of winning in test 3,

$$\begin{aligned} P_{\text{win}} &= \frac{1}{4} \left(P(A_H = 1, B_H = -1|H, H) + P(A_H = -1, B_H = 1|H, H) \right. \\ &\quad P(A_H = 1, B_T = 1|H, T) + P(A_H = -1, B_T = -1|H, T) \\ &\quad P(A_T = 1, B_H = 1|T, H) + P(A_T = -1, B_H = -1|T, H) \\ &\quad \left. P(A_T = 1, B_T = 1|T, T) + P(A_T = -1, B_T = -1|T, T) \right) \end{aligned} \quad (2.21)$$

To do so, we note that as the probability of the different outcomes have to sum to 1, we can write $\langle A_H B_H \rangle$ as

$$\langle A_H B_H \rangle = 1 - 2(P(A_H = 1, B_H = -1|H, H) + P(A_H = -1, B_H = 1|H, H)). \quad (2.22)$$

On using a similar trick with the other expectations values, the probability of winning in test 3 is given by

$$P_{\text{win}} = \frac{1}{8} ((1 - \langle A_H B_H \rangle) + (1 + \langle A_H B_T \rangle) + (1 + \langle A_T B_H \rangle) + (1 + \langle A_T B_T \rangle)) = \frac{1}{2} + \frac{1}{8}C. \quad (2.23)$$

As $P_{\text{win}} \leq 3/4$, it follows that

$$C = 8 \left(P_{\text{win}} - \frac{1}{2} \right) \leq 2. \quad (2.24)$$

However, for quantum players we have $P_{\text{quantum}} = \frac{1}{2} + \frac{\sqrt{2}}{4}$ and so

$$C_{\text{quantum}} = 2\sqrt{2}. \quad (2.25)$$

2.7.2 More formal derivation (i.e. pinning down exactly what is spooky)

We introduced Bell inequalities above with a thought experiment about testing psychics. This hopefully helped to give you an intuition about what is so strange about violating a Bell inequality. Below we present a more formal derivation of the CHSH inequality that helps to pin down precisely how the correlations of a Bell inequality violating system are different to conventional classical correlations.

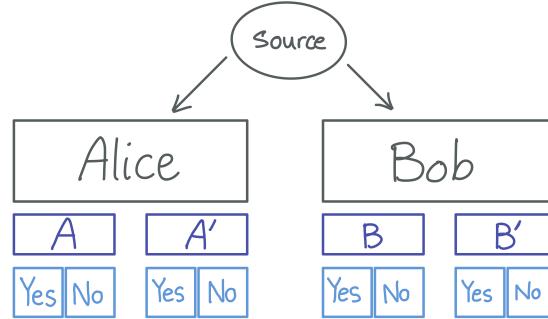


Figure 2.5: The CHSH Inequality

Consider a bipartite system where one part is sent to a LHS measuring device and the other to a RHS measuring device as sketched in Fig. 2.5. The LHS measuring device has a lever allowing it to measure either A or A' . The RHS measuring device can be set to B or B' . When a measurement is made the light under either “Yes” or “No” turns on. We are interested in the correlations between result combinations when measurements are made on the different settings.

Let the probabilities of different result combinations be written as $P(l, r|LR)$ where L and R are placeholders for the settings of the left and right measuring devices (i.e., L can take values A or A' and R values B and B') and l and r are placeholders for the results shown on the LHS and RHS measuring devices and as such can be either be “yes” or “no”.

Bell inequalities define a correlation coefficient C as in Eq. (2.30) and then place an upper bound on possible values this coefficient can take if you assume “factorisability”.

Factorisability is the statement that the probability of l and r can be written as

$$p(l, r|LR) = \int P(l|L, \lambda)P(r|R, \lambda)P(\lambda)d\lambda. \quad (2.26)$$

What is the significance of the factorisability assumption? If events x and y are uncorrelated then their joint distribution can be written as $P(x, y) = P(x)P(y)$. Similarly, the statement: $P(x, y|\alpha, \beta, \gamma) = P(x|\alpha, \beta, \gamma)P(y|\alpha, \beta, \gamma)$ says that the probabilities of x and y are uncorrelated once you take into account variables α, β and γ . Put another way, factors α, β and γ are sufficient to explain any correlations in the probabilities of x and y .

For example, it seems reasonable to expect that the probability that a pub sells more than 100 ice creams in a day, $P(x)$, is correlated of the probability that the pub sells more than 1000 pints of cider, $P(y)$, but these correlations can be explained by taking into account all the various common factors such as outside temperature (α), day of the week (β), and the number

of important sporting fixtures that day (γ). The parameter λ is introduced to incorporate all such common factors⁴ and giving the original statement of factorisability, Eq. (2.26).

As such, the statement of “factorisability” used to set up the Bell inequality can be understood as follows. Given λ , the probability of the outcome of a particular measurement on the LHS given that A is measured, is uncorrelated to the probability of a particular result on the RHS, given that B is measured. That is, λ incorporates all effects from the system’s shared history.

In terms of the experimental set up we are considering here λ represents all information concerning the initial state of the system and the experimental equipment before the system is divided and sent to the different measuring devices. As such, by denying that the joint probability distribution is factorisable we are denying that the correlations between the individual properties are explained by the local factors incorporated in λ . In this way, denying this form of correlation amounts to saying that the correlations are inexplicable in terms of local variables.

There are two necessary conditions for factorisability to hold:

1. **Setting Independence:** $P(l|L, B, \lambda) = P(l|L, B', \lambda)$

The outcome on the LHS does not depend on what measurement is performed on the RHS and vice versa.

2. **Outcome Independence:** $P(l|A, R, r, \lambda) = P(l|A, R, r', \lambda)$

The outcome of LHS does not depend on the outcome of the outcome of the RHS, except in so far as them both depend on λ .

These two conditions lead to factorisability as follows. Given outcome independence, it makes sense to talk of individual probability distributions for l and r , and so we can say that

$$P(l, r|L, R, \lambda) = P(l|L, R, \lambda)P(r|L, R, \lambda) \quad (2.27)$$

Given setting independence we can further say that

$$P(l|L, R, \lambda) = P(l|L, \lambda) \quad (2.28)$$

and similarly for r . It thus follows that

$$P(l, r|L, R, \lambda) = P(l|L, \lambda)P(r|R, \lambda) \quad (2.29)$$

which leads directly to the factorizability condition Eq. (2.26). Thus, if a system is not factorizable then either outcome independence or setting independence (or both) does not hold.

In addition to factorizability two further implicit, but seemingly very reasonable assumptions, are required.

1. “Single outcome assumption”: On each run of the experiment only one result is obtained at each measuring device⁵.

⁴Note; λ only includes factors from the events shared histories, it does not include explicit information about the results of either x or y. My example above would not be factorisable if a pub had a rule that every time 25 ice creams were sold they would toss a coin to decide whether to sell any more ciders that day.

⁵This may seem an odd assumption to explicitly state; however, it does not hold under the many worlds interpretation of quantum mechanics.

2. “No conspiracy assumption”: On each run on the experiment we only obtain results for one of four possible measurements ($A \& B$, $A' \& B$, $A \& B'$, $A' \& B'$). We find the probabilities required to calculate C by averaging out over many runs of the experiment. We need to assume that bias is not introduced by the measuring technique so that the samples used to calculate the probabilities are fair.

Once you have these two definitions the rest of the derivation is basic probability and algebra. In what follows we present the original derivation by Bell which is slightly more general than that presented in the psychic section. Specifically, we will aim to bound

$$C := |\langle LR \rangle - \langle LR' \rangle| + |\langle LR \rangle + \langle L'R \rangle|. \quad (2.30)$$

Using the factorisability condition we have

$$\langle LR \rangle = \sum_{l,r=\pm 1} lrP(l,r|L,R) \quad (2.31)$$

and similarly for the other terms in C .

Theorem 2.7.1. *Suppose that ± 1 are the only allowed values for l and r . The “outcome independence”, “setting independence”, “single outcome” and “no conspiracy assumptions” above imply that*

$$C \leq 2$$

for all choices of parameters l, r, l', r' .

The core intuition for why this holds is the same as in the psychics case. But for completeness, here is the full proof.

Demo.

For convenience let us implicitly define

$$\langle LR \rangle := E_{L,R}(l \cdot r) := \int E_{L,R}(l \cdot r|\lambda)P(\lambda)d\lambda = \sum_{l,r=\pm 1} lrP(l,r|L,R)$$

where $E_{L,R}(l \cdot r)$ is the expectation value of the product $l \cdot r$ for a given choice of L and R . $E_{L,R}(l \cdot r|\lambda)$ represents the same quantity, conditioned on λ . Then we have

$$E_{L,R}(l, r|\lambda) = E_L(l|\lambda)E_R(r|\lambda) \quad \forall \lambda, L, R$$

from which

$$\begin{aligned} C &= |\langle LR \rangle - \langle LR' \rangle| + |\langle LR \rangle + \langle L'R \rangle| \\ &\leq \int [|E_L(l|\lambda)| \cdot |E_R(r|\lambda) - E_{R'}(r|\lambda)| + |E_R(r|\lambda)| \cdot |E_L(l|\lambda) + E_{L'}(l|\lambda)|]P(\lambda)d\lambda \\ &\leq \int [|E_R(r|\lambda) - E_{R'}(r|\lambda)| + |E_L(l|\lambda) + E_{L'}(l|\lambda)|]P(\lambda)d\lambda \end{aligned}$$

where the first inequality is taken from

$$|\int f(x)dx| \leq \int |f(x)|dx$$

and the second one

$$|E_\alpha(l|\lambda)| \leq 1$$

The proof of the theorem follows from

Lemme 2.7.2. for $x, y \in \mathbb{R}$ and $x, y \in [-1, 1]$ we have $|x - y| + |x + y| \leq 2$

Demo.

$$\begin{aligned} (|x - y| + |x + y|)^2 &= 2x^2 + 2y^2 + 2|x^2 - y^2| \\ &= \begin{cases} 4x^2 & x^2 > y^2 \\ 4y^2 & x^2 < y^2 \end{cases} \\ &\leq 4 \end{aligned}$$

□

Bell's non-locality theorem on its own does not tell us which of setting and outcome independence is violated quantum mechanics. However, violation of either of those criterions is sufficient to show that quantum mechanics is in some sense non-local. Bell's non-locality theorem tells us *either* that the setting of the other measuring device, *or* the particular measurement outcome, affects the measurement outcome at the other device.

Note, that there is nothing to prevent the measurement events at the two different devices from being spacelike, and so in terms of our current physical theories causally, separated. As such, either the information concerning the setting of the other measuring device, or result of the other measurement, is communicated at greater than the speed of light. However the former would violate the no signalling theorem. Hence **we conclude that Quantum Mechanics violates outcome independence, not setting independence.**

The correlation coefficient is constructed to apply to any physical theory which makes predictions for the probability of results in any experimental set up of the general structure outlined above. In particular, the derivation makes no direct appeal to either quantum mechanics or determinism. Experiments have subsequently confirmed that the CHSH-Bell inequality is violated by our world. This tells us that any fundamental physical theory for the world we live in (not just quantum mechanics but also any theory that makes accurate predictions about our world!) must have non-local features.

2.8 Contextuality

The final quantum property we will discuss in this chapter is contextuality. It is a less discussed quantum property but nicely completes the set discussed in this chapter so we will cover it in brief. The best example to get a quick sense of contextuality is the Peres-Mermin (PM) square introduced by Kochen and Specker.

Here we consider a set of 9 different binary measurements, each of which can give the outcomes ± 1 . Classically, we see this as being 9 properties of an object that we observe (+1) or do not observe (-1) in our system. We ask that observables in the same column or row form a context, or in other words, are jointly measurable.

$$\begin{bmatrix} A & B & C \\ a & b & c \\ \alpha & \beta & \gamma \end{bmatrix}$$

Let ABC denote the product of the values obtained from measuring A , B and C . Here, BC would be the measurement context of A . The observed properties can be probabilistic, so

we define $\langle ABC \rangle = p(ABC = +1) - p(ABC = -1)$. We then consider (analogously to Bell inequalities) a correlation coefficient, this time of the form:

$$\langle PM \rangle = \langle ABC \rangle + \langle abc \rangle + \langle \alpha\beta\gamma \rangle + \langle Aa\alpha \rangle + \langle Bb\beta \rangle - \langle Cc\gamma \rangle \quad (2.32)$$

Classically we would expect measurements to be **noncontextual**. That is, we would expect the result of an observable to not depend on its context (the other measurements performed). If we assume our measurements are non-contextual (i.e., have pre-determined values) then the maximum value the PM square can take is 4. In fact,

$$-4 \leq \langle PM \rangle \leq 4 \quad (2.33)$$

To see this note that the only way for the function f to have a value of 6 would be for all the products in the definition of f to be 1 except for the product $Cc\gamma$ to be equal to -1 . If the 5 first terms of the sum are all equals to 1, their product would also be equal to one, leading to:

$$A^2 B^2 a^2 b^2 \alpha^2 \beta^2 c C \gamma = 1,$$

implying that $Cc\gamma$ is equal to 1. This proves that $f \leq 4$. A similar argument can show that $f \geq -4$.

However, by carefully picking our quantum observables, can show $\langle PM \rangle$ can *exceed* 4. Form the table of quantum observables as follows

$$\begin{bmatrix} A & B & C \\ a & b & c \\ \alpha & \beta & \gamma \end{bmatrix} \text{ corresponding quantum example } \rightarrow \begin{bmatrix} \sigma_z \otimes \mathbf{I} & \mathbf{I} \otimes \sigma_z & \sigma_z \otimes \sigma_z \\ \mathbf{I} \otimes \sigma_x & \sigma_x \otimes \mathbf{I} & \sigma_x \otimes \sigma_x \\ \sigma_z \otimes \sigma_x & \sigma_x \otimes \sigma_z & \sigma_y \otimes \sigma_y \end{bmatrix}. \quad (2.34)$$

One can readily check that the columns and rows are made of commuting operators and so are jointly measurable as required.

Further note that the products of observables in the same contexts $\{A, B, C, \dots\}$ are the identity except $Cc\gamma = -\mathbf{I}$. Thus we have $\langle PM \rangle = 6$ which violates Eq. (2.33). Note that this result is input state independent! Any two qubit state (entangled or unentangled) is contextual. It follows that quantum mechanics is **contextual**. Broadly contextuality can be understood as stemming from the fact that observables in quantum mechanics do not commute. (Like Bell's inequality, violations of the PM bound have been experimentally verified.)

Chapter 3

Reduced and mixed quantum states

So far we have represented quantum states as a vector $|\psi\rangle$. Density operators, whereby a quantum state is represented by a matrix ρ , is an alternative formalism for representing quantum states. In particular, this perspective will allow us to- i. handle classical uncertainty as well as quantum uncertainty in a single formalism and ii. extract the state of part of a quantum system from knowledge of its composite system.

3.1 Density operators

The *density operator* corresponding to a state $|\psi\rangle$ is given by the matrix $\rho = |\psi\rangle\langle\psi|$. The average value of an observable O in the state ρ is then given by:

$$\langle O \rangle = \text{Tr}(\rho O) = \text{Tr}(|\psi\rangle\langle\psi|O) = \langle\psi|O|\psi\rangle \quad (3.1)$$

Where we have applied the cyclicity of the trace directly to Eq. (3.1) to see that this does indeed give the same expectation value as the standard state vector formalism.

Examples 3.1.1. 1. The state $|\psi\rangle = |1\rangle$ is a pure state of the system, and the corresponding density operator ρ is given by:

$$\rho = |\psi\rangle\langle\psi| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

2. The state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ is written in density matrix form as:

$$\rho = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

3. Bell States: The density operator corresponding to the Bell state $|\Psi_-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$ is given by:

$$\rho = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Density operators open up a new perspective on the Bloch sphere. To see this first note that density operator of a single qubit $\cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$ can be written as

$$\rho = |\psi\rangle\langle\psi| = \begin{pmatrix} \cos(\theta/2)^2 & \cos(\theta/2)\sin(\theta/2)e^{-i\phi} \\ \cos(\theta/2)\sin(\theta/2)e^{i\phi} & \sin(\theta/2)^2 \end{pmatrix} \quad (3.2)$$

Next we note that any 2×2 matrix can be written as a weighted sum of the Pauli matrices,

$$\{\sigma_i\}_{i=0}^3 := \{\mathbb{1}, \sigma_x, \sigma_y, \sigma_z\} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \quad (3.3)$$

because Pauli matrices form an orthogonal basis with the following helpful properties

$$\text{Tr}[\sigma_0] = 1, \text{Tr}[\sigma_k] = 0 \text{ for } k \neq 0 \quad (3.4)$$

$$\text{Tr}[\sigma_j\sigma_k] = 2\delta_{k,j}. \quad (3.5)$$

It follows that we can write

$$\rho = \frac{1}{2}\sigma_0 + \frac{1}{2}\sum_{i=1}^3 v_i\sigma_i \quad (3.6)$$

where the factor of 2 is to account for the factor of 2 in $\text{Tr}[\sigma_j\sigma_k] = 2\delta_{k,j}$.

Next we ask, what is the significance of the vector $\mathbf{v} = (v_1, v_2, v_3)$ in Eq. (3.6). To answer this - we first note that it follows from the properties of the Pauli matrices (namely, $\text{Tr}[\sigma_j\sigma_k] = 2\delta_{k,j}$) that $v_i = \text{Tr}[\rho\sigma_i]$. It follows that the vector \mathbf{v} is a vector of the expectation values of the Pauli observables:

$$\mathbf{v} = \begin{pmatrix} \langle\sigma_x\rangle \\ \langle\sigma_y\rangle \\ \langle\sigma_z\rangle \end{pmatrix}. \quad (3.7)$$

Alternatively, one can verify by direct comparison of Eq. (3.2) and Eq. (3.6) (check this for yourself!) that

$$\mathbf{v} = \begin{pmatrix} \sin(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\theta) \end{pmatrix}. \quad (3.8)$$

That is, the vector \mathbf{v} is the unit Bloch vector which can be used to represent a quantum state on the Bloch sphere.

Thus far this switch in representation may seem rather arbitrary. We have provided a different perspective on quantum states but not done anything more. The real power of this formalism will be made clearer in the following two sections.

3.2 Pure states and mixed states

Suppose someone prepares a system S in the state $|\psi\rangle$ with probability p and state $|\phi\rangle$ with probability $1 - p$ by tossing a biased coin, how would we mathematically represent the state of the system S ? We want a mathematical entity that allows us to correctly compute the

expectation value of any observable O . Now we know from basic probability that the expectation of O should be

$$\begin{aligned}\langle O \rangle &= p\langle O \rangle_\psi + (1-p)\langle O \rangle_\phi \\ &= p\langle \psi | O | \psi \rangle + (1-p)\langle \phi | O | \phi \rangle \\ &= p \text{Tr}(|\psi\rangle\langle\psi|O) + (1-p) \text{Tr}(|\phi\rangle\langle\phi|O) \\ &:= \text{Tr}(\rho O)\end{aligned}$$

where we have used $\text{Tr}(|\psi\rangle\langle\psi|O) = \langle\psi|O|\psi\rangle$ and in the final line defined

$$\rho := p|\psi\rangle\langle\psi| + (1-p)|\phi\rangle\langle\phi|. \quad (3.9)$$

That is, the density operator ρ allows us to compute any expectation value for the system described above where the system was prepared in the state $|\psi\rangle$ with probability p and state $|\phi\rangle$ with probability $1-p$.

More generally, if a system is prepared in state $|\psi_k\rangle$ with probability p_k it can be described by the density operator

$$\rho = \sum_k p_k |\psi_k\rangle\langle\psi_k|.$$

Such states are known as *statistical mixtures* or as *mixed* states. In contrast a state where the exact quantum state is known (i.e. all states studied until now) are known as *pure* quantum states.

How does a generic single qubit mixed state look on the Bloch sphere? To study this we start by recalling Eq. (3.6) and writing

$$\begin{aligned}|\psi\rangle\langle\psi| &= \frac{1}{2}\sigma_0 + \frac{1}{2}\sum_{i=1}^3 v_i \sigma_i \\ |\phi\rangle\langle\phi| &= \frac{1}{2}\sigma_0 + \frac{1}{2}\sum_{i=1}^3 u_i \sigma_i.\end{aligned}$$

Then we note that the mixed state

$$\begin{aligned}\rho &= p|\psi\rangle\langle\psi| + (1-p)|\phi\rangle\langle\phi| \\ &= \frac{1}{2}\sigma_0 + \frac{1}{2}\sum_{i=1}^3 (pv_i + (1-p)u_i) \sigma_i.\end{aligned}$$

That is, the mixed state has a Bloch vector

$$\mathbf{w} = p\mathbf{v} + (1-p)\mathbf{u} \quad (3.10)$$

composed from the weighted convex combination of the Bloch vectors of the original pure state Bloch vectors. This is when the geometric representation provided by the Bloch sphere really comes into its own. If one already knows the original Bloch vectors, it is basic geometry to sketch the new Bloch vector for the corresponding mixed state (see Fig. 3.1).

While pure states have a Bloch vector of norm 1 and sit on the outside of the Bloch sphere, mixed states fall within the Bloch sphere. This follows immediately from the observation that $\mathbf{w} = p\mathbf{v} + (1-p)\mathbf{u}$. Unless $p = 0$, $p = 1$ or $\mathbf{v} = \mathbf{u}$ (which correspond to pure states), the vector \mathbf{w}

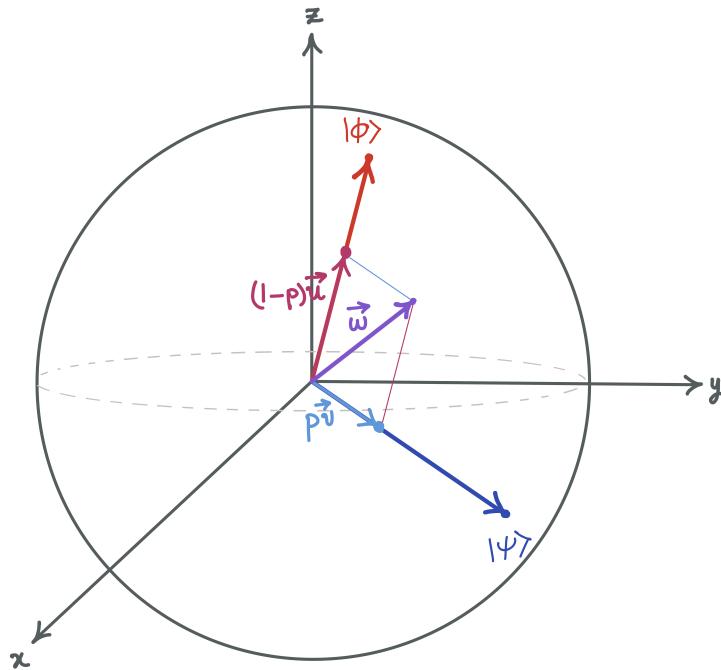


Figure 3.1: Mixed State.

will point to some point in the interior of the Bloch sphere with $|\mathbf{w}|^2 = p^2 + (1-p)^2 + 2p(1-p)\mathbf{u} \cdot \mathbf{v} = 1 - 2p(1-p)(1 - \mathbf{u} \cdot \mathbf{v}) \leq 1$.

A good physical example of a mixed state is that of a thermal state. A thermal state of a Hamiltonian H at inverse temperature $\beta = 1/k_B T$ can be written as

$$\rho = \frac{e^{-\beta H}}{Z} \quad (3.11)$$

where Z is the partition function of the system $Z = \text{Tr}[e^{-\beta H}]$. To see that this reduces to more familiar notions of the thermal state let us expand it in the eigenbasis of $H = \sum_k E_k |E_k\rangle \langle E_k|$. Using the standard definition of the matrix exponential, in this basis we have

$$\begin{aligned} \rho &= \frac{1}{Z} \sum_k e^{-\beta E_k} |E_k\rangle \langle E_k| \\ Z &= \sum_k e^{-\beta E_k}. \end{aligned} \quad (3.12)$$

That is, ρ corresponds to a mixed state where the energy eigenstate $|E_k\rangle$ is prepared with the probability $p_k = e^{-\beta E_k}/Z$ which should look familiar as the standard Boltzmann distribution from your statistical mechanics courses. The state $\rho = \frac{e^{-\beta H}}{Z}$ can be treated as any quantum state - you can combine it with other quantum states, evolve it unitarily, perform quantum measurements etc etc. Thus we see that the density matrix formalism allows one to combine classical statistical mechanics and quantum mechanics.

3.3 Reduced states

In this course so far we have constructed the state of a composite system from the states of the individual systems using the tensor product. But what if one wants to go in the other direction?

Say you are given the state $|\Psi\rangle$ of a 4-dimensional system corresponding to two qubits - how could you describe the state of just one of the qubits? If the state of the composite system is a product state, i.e. $|\Psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$, this is straightforward, i.e. the state of A is just $|\psi_A\rangle$. But what if $|\Psi\rangle$ is entangled? For example, what if it's the Bell state $|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$? Now it's no longer clear how to describe the state of the system A alone. Here we show how this question can be addressed using density operators.

Consider a system composed of two subsystems, A and B , and corresponding Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$. The core idea is to introduce an operator ρ_A (to be defined!) that one can compute from $|\Psi\rangle$ that will allow one to compute all properties of system A alone. That is, given any measurement operator $O \otimes \mathbb{1}_B$ that acts non-trivially on A alone, we want to define an operator ρ_A , defined on the Hilbert space of \mathcal{H}_A alone, that will allow one to compute the expectation value of O .

To identify such an operator let us first write the operator O in its eigenbasis as $O = \sum_{j=1}^{d_A} \lambda_j |\lambda_j\rangle\langle\lambda_j|$. Now we note that the average value of O is given by

$$\langle O \rangle = \sum_{j=1}^{d_A} \lambda_j P_A(\lambda_j) \quad (3.13)$$

where $P_A(\lambda_j)$ is the probability of getting λ_j when measuring system A . Now this probability can be rewritten in terms of

$$P_{AB}(\lambda_j, k) = \langle \lambda_j k | \rho_{AB} | \lambda_j k \rangle, \quad (3.14)$$

the joint probability of finding A to be in $|\lambda_j\rangle$ and system B to be in the state computational basis state¹ $|k\rangle$. Concretely, we have

$$P_A(\lambda_j) = \sum_{k=1}^{d_B} P_{AB}(\lambda_j, k) = \sum_{k=1}^{d_B} \langle \lambda_j k | \rho_{AB} | \lambda_j k \rangle. \quad (3.15)$$

Thus we have

$$\begin{aligned} \langle O \rangle &= \sum_{j=1}^{d_A} \lambda_j \sum_{k=1}^{d_B} \langle \lambda_j k | \rho_{AB} | \lambda_j k \rangle \\ &= \sum_{j=1}^{d_A} \lambda_j \langle \lambda_j | \left(\sum_{k=1}^{d_B} (\mathbb{I}_A \otimes \langle k |) \rho_{AB} (\mathbb{I}_A \otimes |k \rangle) \right) | \lambda_j \rangle \\ &= \sum_{j=1}^{d_A} \lambda_j \langle \lambda_j | \rho_A | \lambda_j \rangle \\ &= \text{Tr}[\rho_A O] \end{aligned} \quad (3.16)$$

where we have defined

$$\rho_A := \sum_{k=1}^{d_B} (\mathbb{I}_A \otimes \langle k |) \rho_{AB} (\mathbb{I}_A \otimes |k \rangle) \equiv \text{Tr}_B[\rho_{AB}] \quad (3.17)$$

This operator is known as a *reduced state* and is another type of density operator. Note that since the trace of an operator is invariant under a change of basis, the use of a density operator to calculate the average value of O does not depend on the choice of the basis used to define this operator.

¹This choice in basis is arbitrary. Any orthogonal basis will do.

It is worthwhile becoming fluent at taking the partial trace of a quantum state. This is usually easiest to do using braket notation rather than working with the explicit matrix forms. To do so, it's helpful to note (prove this to yourself!) that:

$$\text{Tr}_B[|ij\rangle\langle kl|] = |i\rangle\langle k| \text{Tr}[|j\rangle\langle l|] \quad (3.18)$$

from which point you can make use of the standard properties of the trace (e.g. cyclicity).

Example 3.3.1. The reduced state of $|\psi_A\psi_B\rangle$ is given by the density operator $\rho_A = |\psi_A\rangle\langle\psi_A|$ as one would expect from our arguments at the start:

$$\begin{aligned} \rho_A &= \text{Tr}_B[|\psi_A\psi_B\rangle\langle\psi_A\psi_B|] \\ &= |\psi_A\rangle\langle\psi_A| \text{Tr}_B[|\psi_B\rangle\langle\psi_B|] \\ &= |\psi_A\rangle\langle\psi_A|\langle\psi_B|\psi_B\rangle \\ &= |\psi_A\rangle\langle\psi_A|. \end{aligned} \quad (3.19)$$

Example 3.3.2. Consider the Bell state $|\Phi_+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. The reduced state on qubit A is given by

$$\begin{aligned} \rho_A &= \text{Tr}_B[|\Phi^+\rangle\langle\Phi^+|] \\ &= \frac{1}{2} \text{Tr}_B[|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|] \\ &= \frac{1}{2} (|0\rangle\langle 0|\text{Tr}[|0\rangle\langle 0|] + |0\rangle\langle 1|\text{Tr}[|0\rangle\langle 1|] + |1\rangle\langle 0|\text{Tr}[|1\rangle\langle 0|] + |1\rangle\langle 1|\text{Tr}[|1\rangle\langle 1|]) \\ &= \frac{1}{2} (|0\rangle\langle 0|\langle 0|0\rangle + |0\rangle\langle 1|\langle 0|1\rangle + |1\rangle\langle 0|\langle 0|1\rangle + |1\rangle\langle 1|\langle 1|1\rangle) \\ &= \frac{1}{2} (|0\rangle\langle 0| + |1\rangle\langle 1|) \\ &= \frac{1}{2} \mathbb{1} \end{aligned} \quad (3.20)$$

That is, the reduced state on qubit A is the *maximally mixed* state where with equal probability the qubit is in state 0 or state 1. Similarly, $\rho_B = \frac{1}{2}\mathbb{1}$. Crucially we note that

$$\begin{aligned} \rho_A \otimes \rho_B &= \frac{1}{2} (|00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 10| + |11\rangle\langle 11|) \\ &\neq |\Phi^+\rangle\langle\Phi^+|. \end{aligned} \quad (3.21)$$

Thus we see that if you look at only one half of a Bell state the statistical outcomes are no different to tossing a fair coin. But the state of two fair coins is not the same as a Bell state. The interesting behaviour of a Bell state can only be captured by studying the correlations between both systems and captured by the pure state $|\Phi^+\rangle$.

Exercise: Use the notion of a reduced state to argue that entanglement cannot be used for faster than light signalling.

3.4 General properties of density operators

Above we have presented two different ways of obtaining mixed state density operators: by direct construction or as the reduced state of a larger system. More generally, density operators can be introduced more abstractly as any operator with the following properties.

Property 3.4.1. 1. The density operator is self-adjoint, that is to say, $\rho_A^\dagger = \rho_A$,

$$2. \text{ Tr}(\rho_A) = \sum_i \rho_{ii} = \sum_{i,\mu} |\alpha_{i,\mu}|^2 = \|\psi\|^2 = 1,$$

$$3. \text{ The density operator is positive semidefinite, i.e. } \langle \phi | \rho_A | \phi \rangle \geq 0 \text{ for all } |\phi\rangle \in A.$$

It is straightforward to show that the reduced states introduced above satisfy these properties.

Demo. 1. We have:

$$\begin{aligned} \rho_{ij} &= \sum_{\mu} \alpha_{i,\mu}^* \alpha_{j,\mu} \\ \rho_{ji} &= \sum_{\mu} \alpha_{j,\mu}^* \alpha_{i,\mu} \end{aligned}$$

One should see that

$$\rho_{ij} = \overline{\rho_{ji}}$$

2. We compute:

$$\begin{aligned} \sum_i \rho_{ii} &= \sum_i \sum_{\mu} \alpha_{i,\mu}^* \alpha_{i,\mu} = \sum_i \sum_{\mu} \langle i\mu | \psi \rangle \langle \psi | i\mu \rangle \\ &= \sum_{i,\mu} |\langle i\mu | \psi \rangle|^2 \end{aligned}$$

The $|i\rangle$ and $|\mu\rangle$ form a basis of A and B , respectively. Thus, the sum over i and μ give the norm of $|\psi\rangle$, which is by definition normalized to 1.

3. We compute :

$$\begin{aligned} \langle \phi | \rho_A | \phi \rangle &= \sum_{i,j} \sum_{\mu} \langle \phi | i \rangle \langle j | \phi \rangle \langle i\mu | \psi \rangle \langle \psi | j\mu \rangle \\ &= \sum_{\mu} \beta_{\mu} \beta_{\mu}^* \\ &= \|\beta\|^2 \geq 0, \end{aligned}$$

where $\beta_{\mu} = \langle \phi | i \rangle \langle i\mu | \psi \rangle$

□

Notice that these properties imply, in particular:

- There exists a basis in which ρ_A is diagonal (from point 1),
- Furthermore, points 2 and 3 impose a particular form on the diagonal representation of the operator ρ_A :

$$\rho_A = \sum_j p_j |j\rangle \langle j|,$$

where $p_j \geq 0$ and $\sum p_j = 1$. Thus,

$$\langle O \rangle = \text{Tr}(\rho_A O) = \sum_j p_j \langle j | O | j \rangle = \sum_j p_j \langle O \rangle_{|j\rangle},$$

where $\langle O \rangle_{|j\rangle}$ denotes the average value of O for the subsystem consisting of state $|j\rangle$.

We note that if a density operator describes a pure state, then it is a projector, i.e., $\rho^2 = \rho$. In fact, the two properties are equivalent: if $\rho^2 = \rho$, the eigenvalues of the density operator must necessarily be 0 or 1. But since the sum of the eigenvalues of a density operator must be equal to 1, there must be a single eigenvalue of the density operator that equals 1, and it is unique.

On the other hand, if ρ is not pure then we have $\rho^2 \neq \rho$ and $\text{Tr}[\rho^2] \leq 1$. To see this we consider writing in its eigenbasis as $\rho = \sum_k \lambda_k |\psi_k\rangle\langle\psi_k|$. It follows that $\rho^2 = \sum_k \lambda_k^2 |\psi_k\rangle\langle\psi_k| \neq \rho$ and $\text{Tr}[\rho^2] = \sum_k \lambda_k^2$ and this is less than 1 unless $\{\lambda_k\} = \{1, 0\}$ which again reduces to the case where $\rho = |\psi_0\rangle\langle\psi_0|$ is a pure state. The quantity $\text{Tr}[\rho^2]$ is known as the *purity* of a state - it takes its maximal value of 1 for a pure state and is less than 1 otherwise. An alternative way of showing that mixed states live within the interior of the Bloch sphere is to establish that the condition that $\text{Tr}[\rho^2] \leq 1$ implies that the norm of the Bloch vector is less than 1, i.e. $|\mathbf{w}| \leq 1$. We leave this as an exercise for the reader.

3.5 Evolution of density operators

Let's consider a density operator in diagonal form at $t = 0$:

$$\rho(t=0) = \sum_j \alpha_j |\psi_j(0)\rangle\langle\psi_j(0)|$$

We are interested in determining the laws governing its time evolution. We assume that the statistical mixture does not change over time. In other words, α_i does not depend on t , and

$$\rho(t) = \sum_j \alpha_j |\psi_j(t)\rangle\langle\psi_j(t)|.$$

The time evolution of a state has already been characterized as:

$$|\psi_j(t)\rangle = e^{-iHt} |\psi_j(0)\rangle$$

Using these two equations, we obtain:

$$\rho(t) = \sum_j \alpha_j e^{-iHt} |\psi_j(0)\rangle\langle\psi_j(0)| e^{iHt}$$

We differentiate:

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= \sum_j \alpha_j (-iH) e^{-iHt} |\psi_j(0)\rangle\langle\psi_j(0)| e^{-iHt} \\ &\quad + \sum_j \alpha_j e^{-iHt} |\psi_j(0)\rangle\langle\psi_j(0)| (iH) e^{iHt} \\ &= (-iH) \rho + \rho (iH) \end{aligned}$$

which leads to the equation:

$$i \frac{\partial \rho}{\partial t} = [\hat{H}, \rho], \quad (3.22)$$

describing the time evolution of the density operator. Note that while this may look like the Heisenberg equation, ρ does not define an observable physical quantity!

Chapter 4

Measurement and decoherence

4.1 The measurement problem

Here we will discuss a topic at the very core of quantum mechanics that is fundamental to our understanding (/lack of understanding) of the field known as the measurement problem.

The measurement problem can be set up from the following basic assumptions about the theory of quantum mechanics.

1. Basic Conception of a measuring device: a good measuring device is accurate.
2. Quantum Mechanics is a universal and fundamental theory
3. Weak Physicalist Postulate: The description of the behaviour of large objects must be consistent with the laws governing the behaviour of the smaller objects of which they consist.

A quantum measuring device is a device which can extract information from a quantum system. A basic measuring device, e.g. for measuring the spin state of an electron, can be envisioned as follows. The device has a pointer and three possible positions labelled “ready”, “up” and “down”. The pointer is at “ready” initially. In order for the measuring device to be accurate we simply require that the device can correctly inform us of the state of the electron. As such, we require that when an “up electron” is fed in the pointer moves from the “ready” label to the “up” label. When a “down electron” is fed in, the pointer moves from the “ready” label to the “down” label. That is, we have

$$\begin{aligned} |\text{`ready'}\rangle_M |\uparrow\rangle_S &\rightarrow |\text{`up'}\rangle_M |\uparrow\rangle_S \\ |\text{`ready'}\rangle_M |\downarrow\rangle_S &\rightarrow |\text{`down'}\rangle_M |\downarrow\rangle_S \end{aligned} \tag{4.1}$$

Then from assumptions 2. and 3. we get that we should be able to describe our measuring device quantum mechanically. Thus, we should ascribe quantum mechanical states to the measurement system’s pointer states.

Based on these assumptions the following is a simple way of setting up the measurement problem. We start with the following postulates of quantum mechanics.

(A) **Formalism:** Every physical quantity is represented by an operator Q and every state of a physical system by a state vector $|\psi\rangle$

(B) **Measurement Kinematic Postulate:** If a quantity Q is measured, the post measurement state of the system will be the eigenstate corresponding to the eigenvalue measured.

(C) **Dynamical Postulate:** Time evolution is a linear map from state to state.

Consider measuring the spin of an electron using the accurate measurement device outlined above. A contradiction is generated when we consider what happens when you feed a superposition into the measuring device. That is, suppose we feed in

$$|\text{'ready'}\rangle_M \frac{1}{\sqrt{2}} (|\uparrow\rangle_S + |\downarrow\rangle_S) \quad (4.2)$$

Given our conception of a good measuring device (Eq. (4.5)) and that, from the Dynamical Postulate, quantum systems evolve linearly, the resulting state is

$$|\text{'ready'}\rangle_M \frac{1}{\sqrt{2}} (|\uparrow\rangle_S + |\downarrow\rangle_S) \rightarrow \frac{1}{\sqrt{2}} (|\text{'up'}\rangle_M |\uparrow\rangle_S + |\text{'down'}\rangle_M |\downarrow\rangle_S) \quad (4.3)$$

We are left with a superposition of the measurement device being in the ‘up’ state and the ‘down’ state.

In this way the linearity of quantum mechanics dynamics combined with quantum mechanical treatment of a basic conception of a measuring device leads to the conclusion that a system in a superposition remains in a superposition. According to dynamical postulate there is no way to get the system into an eigenstate of an observable if it is not already in one. However, this contradicts A! The Measurement Kinematic Postulate states that post measurement of the system will be in an eigenstate of the observable being measured.

So, can we just get rid of the Measurement Kinematic Postulate to solve the measurement problem? Not quite. There are still many conceptual problems with how to understand Eq. (4.3).

- (i) It seems to **contradict with the world around us** - we don't seem to see these weird macroscopic superpositions between measurement devices.
- (ii) It seems to **contradict quantum formalism**, in particular, the Born rule.

4.2 Easy resolutions and why they do not solve the problem

4.2.1 The collapse postulate

Doesn't the collapse postulate resolve the measurement problem? Von Neumann claimed that there must be two fundamental laws about how the states of Quantum Mechanics evolve.

- (I) When no measurements are going on, the states of all physical systems evolve linearly (via the Schrodinger equation) in accordance with the dynamical postulate.
- (II) When there are measurements, the systems do not evolve in accordance with the dynamical equations of motion. Instead, they evolve in accordance with the postulate of collapse.

Criticism: The problem with this approach is that the word measurement does not have a precise enough meaning to play such a fundamental role in the laws of physics. As such, these rules do not determine exactly how the world behaves and so do not amount to fundamental laws. (This contradicts premise 2 in the first part of this note).

Figure 4.1: Credit: L'heure est grave

In particular, there are two key ambiguities with the term measurement.

Firstly, *what processes count as measurements?* A measurement is something which extracts information from a system. However, many actions not conventionally associated with measurement extract information from a system. If observing a dead cat tells you that an electron must have “spin up” or else it would not have been able to set off the killing device, then observing the dead cat is a measurement. Seen in this way measurement are made continually and so we are lead to the conclusion that all most all evolution takes place via the collapse postulate rather than quantum mechanics. However, Quantum Mechanics cannot be driven just by rule II because that tells us nothing about how systems evolve with time and states clearly do evolve.

Secondly, *measurement requires a divide between the system being measured and the part doing the measuring and there is no definite prescription for how this division is to be made.* John Bell in his essay “*Against Measurement*” uses the example of an alpha particle travelling along a photographic plate. We can either consider the alpha particle as the system and the photographic plate as the external measuring device or we can consider the photographic plates as also part of the quantum mechanical system. The two records are mutually consistent and though the second is more detailed than the first it is clearly not the final description. Given these considerations how can we apply Von Neumann’s two rules? Does rule I cease to apply as soon as the alpha particle reaches the photographic plate, when the temperature of the cloud chamber rises, when I take a photo or when this photo is observed? Bell advocates the guiding rule: “put the split sufficiently much into the quantum system that the inclusion of more would not significantly alter practical purposes”. This rule is sufficiently unambiguous for practical purposes though it is still fundamentally ambiguous.

4.2.2 Decoherence

A more modern way of at least in part resolving the measurement problem is via the concept of decoherence. Note that decoherence is a fundamental physical phenomenon that is important to understand independently of the measurement problem.

Core to understanding decoherence is the observation that the environment acts a good measurement device. This means that corresponding to different positions of the electron are environmental ‘pointer’ states such as “the total environment as if the electron is at x ”. (Even in the absence of matter, radiation reflecting from an electron records its location and this radiation will in turn causally interact with its surroundings.) Thus, treating the environment as a measurement device, we can generalize Eq. (4.5) and write

$$\begin{aligned} |\text{Initial Environment}\rangle_E |\text{ready}\rangle_M |\uparrow\rangle_S &\rightarrow |\text{Total environment given } \uparrow\rangle_E |\text{up}\rangle_M |\uparrow\rangle_S \\ |\text{Initial Environment}\rangle_E |\text{ready}\rangle_M |\downarrow\rangle_S &\rightarrow |\text{Total environment given } \downarrow\rangle_E |\text{down}\rangle_M |\downarrow\rangle_S \end{aligned} \quad (4.4)$$

And so the output state after the measurement and interaction with the environment will be

$$|\psi^{\text{out}}\rangle_{EMS} \propto |\text{Total environment given } \uparrow\rangle_E |\text{up}\rangle_M |\uparrow\rangle_S + |\text{Total environment given } \downarrow\rangle_E |\text{down}\rangle_M |\downarrow\rangle_S \quad (4.5)$$

Now if we look at the reduced state on the system and measurement device will be

$$\begin{aligned} \rho_{MS}^{\text{decoh}} &= \text{Tr}_E[|\psi^{\text{out}}\rangle\langle\psi^{\text{out}}|_{EMS}] \\ &= \frac{1}{2} (|\text{up}\rangle\langle\text{up}|_M + |\text{down}\rangle\langle\text{down}|_M + r|\text{up}\rangle\langle\text{down}|_M + r^*|\text{down}\rangle\langle\text{up}|_M) . \end{aligned} \quad (4.6)$$

where $r = \langle \text{Total environment given } \uparrow | \text{Total environment given } \downarrow \rangle$.

In the realistic limit where $r \rightarrow 0$ we then have:

$$\rho_{MS}^{\text{decoh}} \rightarrow \rho_{MS}^{\text{Born}} := \frac{1}{2} (|\text{up}\rangle\langle\text{up}|_M + |\text{down}\rangle\langle\text{down}|_M) \quad (4.7)$$

where ρ_{MS}^{Born} is the state you would expect to get out from measurement corresponding to the case where you find the spin either in the up or down state with equal probabilities.

What does this tell us? Well this largely deals with the worry that states like Eq. (4.3) contradict with the world around us. It explains why we do not observe interference between macroscopic objects like measurement devices.

Does it also solve the contradiction with the Born rule? Not really. And that's because even though we find that $\rho_{MS}^{\text{decoh}} = \rho_{MS}^{\text{Born}}$ mathematically there is an important difference between what the states on the left and right sides of this equality represent conceptually physically. This is the distinction between proper and improper mixtures.

Proper mixtures: Mixed states that can be interpreted as arising from ignorance of the underlying pure state.

Improper mixtures: Mixtures that arise when you examine a subsystem of a larger pure state.

The state resulting from decoherence ρ_{MS}^{decoh} is an improper mixture (i.e. that formed from a reduced state), whereas the state captured by the Born rule ρ_{MS}^{Born} is a proper mixture. Therefore they do not represent the same physical scenario despite being represented by the same mathematical entity. (Note, this mathematical equivalence/ambiguity is why we can forget about the measurement problem when getting on with life/research most of the time).

Sometimes the measurement problem is stated directly in terms of proper and improper mixtures as the contradiction that the Born rule says the outcome of a measurement is a proper mixture but the output of a measurement according to the dynamical laws of quantum mechanics is an improper mixture.

4.2.3 Instrumentalism

It is sometimes suggested that the measurement problem can be avoided by taking an instrumentalist approach to quantum mechanics.

The proposed solution is typically to deny assumption 2 right at the start, namely that quantum mechanics is a ‘universal and fundamental theory’. Instead it is claimed that the wavefunction depends on the knowledge of the person doing the calculation. Individuals with different amounts of knowledge concerning the system will come up with different wavefunctions. This is why the wavefunction appears to “collapse” when the measurement device is read. If we have an accurate measuring device and the device reads “up” we can infer that the pointer state of the device is “up” and the electron is spin up. The change is non linear because our knowledge changes but this is unproblematic we are treating our knowledge as external to rather than part of the dynamic process.

Criticism: To start, it is worth asking whether the approach advocated here is one of limited or universal instrumentalism. Either answer is problematic. If the instrumentalism is limited just to the wavefunction - then it needs to be asked whether this limitation is coherent and warranted. That is, why are we treating the wavefunction differently to other concepts in physics. If the instrumentalism is universal then all the usual reasons for thinking instrumentalism is an untenable philosophical position apply (see <https://plato.stanford.edu/entries/scientific-realism/> for a long discussion).

The measurement problem is a fundamental problem in quantum mechanics that really gets at the essence of what the theory tells us about the nature of the world. Nonetheless, it is one that we can largely ignore while getting on with most research (and passing most exams).

However, if I have sparked your attention and you are interested in reading more about the measurement problem I would first recommend reading “*Against Measurement*” by John Bell. There he argues that quantum mechanics is a theory of observables rather than beables. Quantum mechanics is entirely concerned with “the results of measurements”; however, the concept of measurement becomes so vague on reflection that it is unsatisfying to have it at the centre of a fundamental theory. Quantum mechanics divides the world into two parts; that which is observed and that which is observing. The results depend on how this division is made but only a practical guide can be given on where to draw the line. His proposed solution: such a theory cannot be complete.

If you would then like to read about some more modern potential resolutions of the measurement

problem I would recommend reading David Wallace on the Many Worlds interpretation and Carlo Rovelli on quantum relationalism.

4.3 Decoherence as a dynamical process

This section is a lightly modified version of Jim Al-Khalili's notes on decoherence which are available at <https://www.surrey.ac.uk/sites/default/files/2023-01/introduction-to-decoherence-theory-lectures-one-to-five.pdf> and I copy here for convenience.

Two limits of quantum measurement

The total Hamiltonian of a system and environment can be written as

$$H_{SE} = H_S \otimes \mathbb{I} + \mathbb{I} \otimes H_E + \lambda H_I. \quad (4.8)$$

In the limit in which the interaction energy is small (i.e. broadly when λ is small compared to the eigenenergies of H_S and H_E) we can ignore the interaction term and we have that the system and environment evolve under H_S and H_E independently:

$$\begin{aligned} e^{-itH_{SE}}|\psi_S\phi_E\rangle &\approx e^{-itH_S \otimes \mathbb{I} + \mathbb{I} \otimes H_E}|\psi_S\phi_E\rangle \\ &= e^{-itH_S \otimes \mathbb{I}}e^{-it\mathbb{I} \otimes H_E}|\psi_S\phi_E\rangle \\ &= e^{-itH_S} \otimes e^{-itH_E}|\psi_S\phi_E\rangle \\ &= e^{-itH_S}|\psi_S\rangle \otimes e^{-itH_E}|\phi_E\rangle. \end{aligned} \quad (4.9)$$

This is implicitly what has been assumed in most (all?) calculations you have performed previously. For example, when we studied the two slit experiment we did not model the interaction between the system and the environment.

What happens if we instead consider the limit in which the interaction term dominates?

We often write the interaction Hamiltonian as $H_I = S \otimes E$, where S and E are operators acting in the Hilbert spaces of the system and environment. We really only need to worry about S which will correspond to some system observable like its position that is superselected by the environment (i.e., constantly being monitored by the environment).

Let's suppose, as is the case very often in practise, that the system and environment interact in the position basis. That is, let

$$H_I = \hat{x} \otimes \hat{E} \quad (4.10)$$

where

$$\hat{x} = \sum_i x_i |X_i\rangle \langle X_i|, \quad (4.11)$$

and x_i are position eigenvalues and $|X_i\rangle$ are position eigenstates. (Note the above equation defining the operator is just the equivalent of the eigenvalue equation $\hat{x}|X_i\rangle = x_i|X_i\rangle$). It then follows that since system and environment operators act in different Hilbert spaces we have that

$$[H_I, \hat{x}] = (\hat{x} \otimes \hat{E})\hat{x} - \hat{x}(\hat{x} \otimes \hat{E}) = \hat{x}\hat{x} \otimes \hat{E} - \hat{x}\hat{x} \otimes \hat{E} = 0 \quad (4.12)$$

This commutation relation is known as Zurek's commutativity criterion. Therefore, while in general the position operator does not commute with the total Hamiltonian (i.e. we cannot

measure the position and energy of a quantum system simultaneously) it holds in this particular limit (the quantum measurement limit) of $\hat{H} = \hat{H}_I = \hat{x} \otimes \hat{E}$. So, \hat{H}_I and \hat{x} have common eigenstates, $|X_i\rangle$.

If we start the system in some position eigenstate, $|X_i\rangle$, and the environment in initial state, $|E_0\rangle$, then at $t = 0$ the combined state is $|X_i\rangle|E_0\rangle$. An evolution operator, \hat{U} , will take this forward to time t :

$$\hat{U}|X_i\rangle|E_0\rangle = e^{-i\hat{H}_I t}|X_i\rangle|E_0\rangle = |X_i\rangle e^{-ix_i \hat{E} t}|E_0\rangle = |X_i\rangle|E_{x_i}\rangle, \quad (4.17)$$

where $|E_{x_i}\rangle$ is the state of the environment now containing information about the position of the quantum system (particle).

What we see in this last equation is that the system and environment are still not entangled. So $|X_i\rangle$ represents an *environmentally superselected preferred state*. Let our system be in a superposition of pointer states:

$$|\psi\rangle = \sum_i c_i |X_i\rangle. \quad (4.18)$$

Now

$$\begin{aligned} e^{-i\hat{H}_I t}|\psi\rangle|E_0\rangle &= e^{-i\hat{x} \otimes \hat{E}} \left(\sum_i c_i |X_i\rangle \right) |E_0\rangle \\ &= \left(c_1 |X_1\rangle e^{-ix_1 \hat{E} t} + c_2 |X_2\rangle e^{-ix_2 \hat{E} t} + \dots \right) |E_0\rangle \\ &\rightarrow c_1 |X_1\rangle |E_1(t)\rangle + c_2 |X_2\rangle |E_2(t)\rangle + \dots, \end{aligned}$$

where we now have an entangled state of system and environment and $|E_1\rangle$ etc is the state of the environment that contains information about the system being in position x_1 . If these states are close to orthogonal, i.e. $\langle E_i(t)|E_j(t)\rangle \rightarrow 0$ then the reduced state of the system will be completely decohered in the position basis.

Note there was nothing special persay about the position basis, we could have run this argument in any basis and that would lead to decoherence in *that* basis. However, the basis of decoherence it determined by the form of the interaction Hamiltonian. And that will typically, but not always, be the position basis.

4.3.1 A simple model for decoherence

Physical systems exhibiting decoherence are varied. Luckily – and perhaps surprisingly – a small set of simple canonical models can describe a wide range of phenomena and physical systems. Thus the system of interest can be modelled as either a spin- $\frac{1}{2}$ particle (qubit) or as having continuous phase space variables and moving in some potential (H-O or double well are popular examples). The environment likewise can be modelled either as a collection of qubits or as a heat bath of harmonic oscillators.

Consider a quantum system S to be a qubit with basis states $|0\rangle$ and $|1\rangle$ denoting spin up and down with respect to the z-axis. The total system plus environment is described by a tensor product Hilbert space

$$H = H_S \otimes H_{e_1} \otimes H_{e_2} \otimes \dots \otimes H_{e_N}, \quad (4.15)$$

where H_S denotes the Hilbert space of the system and H_{e_i} denotes the Hilbert space of the i -th environmental qubit.

The total Hamiltonian is chosen to be of the form

$$H = H_I = \frac{1}{2} \hat{\sigma}_z \otimes \left(\sum_{i=1}^N g_i^{(i)} \hat{\sigma}_z^{(i)} \right) = \frac{1}{2} \hat{\sigma}_z \otimes \hat{E}. \quad (4.16)$$

where g_i are coupling strengths and $\hat{\sigma}_z^{(i)}$ is a Pauli Z on the i th environment qubit (for compactness of notation I am suppressing a bunch of identity operators on the other environment qubits but technically they should be there).

Now, when we act with the evolution operator involving the above Hamiltonian on an initial unentangled state of system and environment we see

$$e^{-i\hat{H}_I t} |0\rangle |E_0\rangle = e^{-\frac{i}{2}\hat{\sigma}_z \otimes \hat{E}t} |0\rangle |E_{\text{initial}}\rangle = |0\rangle e^{-\frac{i}{2}\sum_i g_i \hat{\sigma}_z^{(i)} t} |E_{\text{initial}}\rangle = |0\rangle |E_0(t)\rangle, \quad (4.17)$$

where the state of the environment can start off as complicated as we wish, with each qubit in a superposition:

$$|E_{\text{initial}}\rangle = (\alpha_1|0\rangle + \beta_1|1\rangle) \otimes \dots \otimes (\alpha_N|0\rangle + \beta_N|1\rangle). \quad (4.18)$$

Thus we see that in this case the state remains a product state.

If instead the system starts off in a superposition then

$$e^{-iH_{\text{int}} t} (\alpha|0\rangle + \beta|1\rangle) |E_{\text{initial}}\rangle \rightarrow \alpha|0\rangle |E_0(t)\rangle + \beta|1\rangle |E_1(t)\rangle \quad (4.19)$$

where $|E_0(t)\rangle := e^{-\frac{i}{2}\sum_i g_i \hat{\sigma}_z^{(i)} t} |E_{\text{initial}}\rangle$ and $|E_1(t)\rangle := e^{\frac{i}{2}\sum_i g_i \hat{\sigma}_z^{(i)} t} |E_{\text{initial}}\rangle$.

We have seen already that the rate of decoherence depends on the overlap of the environment states that are entangled with each of the system states and the degree to which they are orthogonal (distinguishable)

$$r(t) = \langle E_1(t) | E_0(t) \rangle. \quad (4.20)$$

To get a handle on this let us first note that we can write the environment states more compactly as

$$|E_0(t)\rangle = \sum_{j=1}^{2^N} e^{-ie_j t/2} c_j |n_j\rangle. \quad (4.21)$$

where we switch to binary notation, i.e. $|n_0\rangle = |00\dots 0\rangle$, $|n_1\rangle = |00\dots 1\rangle$ etc. The c_j coefficients are each a product of N α 's and β 's (for example, $c_1 = \alpha_1\alpha_2\dots\alpha_N$); and finally, the energy e_j is

$$e_j = \sum_{k=1}^N (-1)^{n_j} g_k, \quad n_j = \begin{cases} 0 & \text{for an even number of } |1\rangle \text{ states in the product } |n_j\rangle \\ 1 & \text{for an odd number of } |1\rangle \text{ states in the product } |n_j\rangle \end{cases} \quad (4.22)$$

Now we can look at the overlap of two environment states to see the structure of the decoherence rate r . The two environment states only differ by a sign in the exponent and therefore, taking the overlap means we have two minus signs

$$r(t) = \langle E_1(t) | E_0(t) \rangle = \sum_{i,j} e^{-ie_j t/2} e^{-ie_i t/2} c_i^* c_j \langle n_i | n_j \rangle = \sum_{i=1}^{2^N} e^{-ie_i t} |c_i|^2. \quad (4.23)$$

It was shown by Zurek in his classic paper (Phys. Rev. D 26, 1862 (1982)) that evolution of $r(t)$ reduces to a random walk problem in the 2-D complex plane and that the time averaged modulus square of the complex vector $r(t)$ scales as

$$\langle |r(t)|^2 \rangle \propto 2^{-N} \quad \text{as} \quad t \rightarrow \infty \quad (4.24)$$

That is, the rate of decoherence scales exponentially with the size of the environment. We will not prove this here but you can clearly see how the size of the environment affects the decoherence rate since recall that the c_i coefficients in Eq.(5.15) are each a product of N amplitudes, α and β . That is $|c_i|^2$ is a product of N probabilities, each < 1 . So the larger the environment (size of N), the smaller the value of $|c_i|^2$ in (5.14).

For very large N , the decoherence rate is roughly a Gaussian decay:

$$r(t) \approx e^{-\Gamma^2 t^2}. \quad (4.25)$$

The decay constant, Γ^2 , depends on the distribution of the coupling strengths, g_i , between the system and each of the qubits in the environment. You see, for our model, each of the 2^N terms in the sum in (5.15) a different phase since e_j is a sum (Eq.(5.12)) of coupling strengths whose sign depends on whether the qubit in the environment is spinning up or down.

Decoherence versus dissipation The relaxation time t_r is defined as the time taken for a system to dissipate thermal energy into its environment until they reach thermal equilibrium. However, decoherence can occur even without energy dissipation, meaning the environment can gain information about the system without energy exchange. Decoherence typically takes place on a faster time scale than dissipation/thermalization; however this is problem dependent.

Decoherence versus classical noise Classical noise and decoherence represent different physical processes. Classical noise can in principle be undone by local operations and is very slow. In contrast, decoherence is a process where the system perturbs the environment, leading to a fast, effectively irreversible process.

Chapter 5

Identical multi-particle systems

In this section, we discuss the behaviour of identical quantum particles. We will explain how there are two sorts of identical particles distinguished by how their state changes when you swap two particle labels. At least initially in this section, we will switch back to working directly in terms of the wavefunction of particles because i. this is how this topic is conventionally taught, ii. it's good to stay fluent with both sets of notation and iii. I draw in part on Vincenzo Savona's notes here which were written in terms of wavefunctions. However, we could have equally phrased this section entirely in braket notation (or entirely in wavefunction notation).

5.1 Two identical particles

Consider a system with two particles labelled as 1 and 2. Suppose that each one-particle subsystem is described by wave functions $\phi_i(r_i)$ for $i \in \{1, 2\}$. How can you write the wavefunction of the joint system for 1 and 2? The most naive response, which would suggest that the product of one-particle wave functions satisfies the Schrödinger equation, fails in the general case. Indeed, such a solution, on the one hand, assumes that the probabilities of particle presence are entirely independent (which amounts, among other things, to neglecting all interactions between particles), and, on the other hand, potentially violates the linearity of the Schrödinger equation. More generally, for a system of two interacting particles through a potential $\hat{U}(\mathbf{r}_1, \mathbf{r}_2)$, writing

$$\left(\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}_1^2} - \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}_2^2} + \hat{V}(\mathbf{r}_1) + \hat{V}(\mathbf{r}_2) + \hat{U}(\mathbf{r}_1, \mathbf{r}_2) \right) \psi_1(\mathbf{r}_1) \psi_2(\mathbf{r}_2) = E \psi_1(\mathbf{r}_1) \psi_2(\mathbf{r}_2),$$

presupposes that the two-particle Schrödinger equation:

$$\left(\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}_1^2} - \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}_2^2} + \hat{V}(\mathbf{r}_1) + \hat{V}(\mathbf{r}_2) + \hat{U}(\mathbf{r}_1, \mathbf{r}_2) \right) \psi(\mathbf{r}_1, \mathbf{r}_2) = E \psi(\mathbf{r}_1, \mathbf{r}_2), \quad (5.1)$$

is separable, which is not necessarily true. We must find a way to describe the system using a single wave function that depends on all coordinates.

Suppose the particles are identical. This implies, among other things, that the probability $|\psi(\mathbf{r}_1, \mathbf{r}_2)|^2$ of finding one particle at point \mathbf{r}_1 and the other at point \mathbf{r}_2 must be equal to $|\psi(\mathbf{r}_2, \mathbf{r}_1)|^2$. In other words, we must have:

$$\psi(\mathbf{r}_2, \mathbf{r}_1) = e^{i\phi} \psi(\mathbf{r}_1, \mathbf{r}_2)$$

Now this equation must hold for any \mathbf{r}_1 and \mathbf{r}_2 (if it did not it would imply that the space was non-isotropic¹). This means it also holds in the case that $\mathbf{r}_1 \rightarrow \mathbf{r}_2$ and $\mathbf{r}_2 \rightarrow \mathbf{r}_1$ and so we also have

$$\psi(\mathbf{r}_1, \mathbf{r}_2) = e^{i\phi} \psi(\mathbf{r}_2, \mathbf{r}_1).$$

Combining these two equations then gives

$$\begin{aligned} \psi(\mathbf{r}_2, \mathbf{r}_1) &= e^{i2\phi} \psi(\mathbf{r}_2, \mathbf{r}_1) \\ \implies e^{i2\phi} &= 1 \\ \implies e^{i\phi} &= \pm 1. \end{aligned}$$

Now let's make this a bit more formal by defining \mathbb{P}_{12} be the operator that acts on the system by interchanging particles 1 and 2. By the argument above, we know that for identical particles we have

$$\mathbb{P}_{1,2} \psi(\mathbf{r}_1, \mathbf{r}_2) = \psi(\mathbf{r}_2, \mathbf{r}_1) = \pm \psi(\mathbf{r}_1, \mathbf{r}_2).$$

Thus the permutation operator $\mathbb{P}_{1,2}$ has eigenvalues ± 1 . We note that there is nothing² in the above argument that is unique to the vectors \mathbf{r}_1 and \mathbf{r}_2 being position vectors and so the argument equally applies to arbitrary vectors to the particle variables.

The eigenstates corresponding to the $+1$ eigenvalue are said to be symmetric under exchange (particles described by these functions are *bosons*) and the particles corresponding to the -1 operator are said to be anti-symmetric under exchange (particles described by these functions are *fermions*). Fermions are half-integer spin particles such as electrons and quarks. Bosons are integer spin particles such as photons or gluons. This correlation with spin can be taken as an empirical fact in standard quantum mechanics.

Fermions. A direct consequence of the wavefunction of fermions being anti-symmetric under the particle permutation operator, i.e. $\mathbb{P}_{1,2} \psi(\mathbf{r}_1, \mathbf{r}_2) = \psi(\mathbf{r}_2, \mathbf{r}_1) = -\psi(\mathbf{r}_1, \mathbf{r}_2)$, is that there is zero probability of finding two fermions in precisely the same state. More concretely, if $\psi(\mathbf{r}, \mathbf{r}) = -\psi(\mathbf{r}, \mathbf{r})$ then we must have that $\psi(\mathbf{r}, \mathbf{r}) = 0$.

Of course, a particle can possess more properties than a location. Let $|x\rangle = |m, \mathbf{r}, \dots\rangle$ be a single quantum state to denote state dependent properties (e.g. its spin orientation m , position \mathbf{r} , ...) of a particle. We can then write a two particle state as

$$|\psi\rangle = \sum_{x,x'} a_{x,x'} |x, x'\rangle. \quad (5.2)$$

Note that now, rather than explicitly labelling the variables as corresponding to system 1 and 2 respectively as in $\psi(\mathbf{r}_1, \mathbf{r}_2)$, I am taking the left and the right slots of the ket $| \dots \rangle | \dots \rangle$ to correspond to systems 1 and 2 respectively. In this formalism, for fermions we have

$$\mathbb{P} |x', x\rangle = |x, x'\rangle = - |x', x\rangle \quad (5.3)$$

¹To see this, imagine \mathbf{r}_1 and \mathbf{r}_2 are single parameter variables and we place our coordinates such that the origin is midway between them. Now, we're considering $\psi(r, -r)$. Assuming the physics of the universe is invariant under reflections we are free to redefine $-r \leftrightarrow r$ without changing anything physical. Thus if $\psi(r, -r) = e^{i\phi} \psi(-r, r)$ we also have $\psi(-r, r) = e^{i\phi} \psi(r, -r)$. For arbitrary vectors we can also do the same trick of putting the coordinate system midway between the two particles and considering the axis that connects them.

²Ok this is where it gets super subtle. Technically my isotropy argument above did rely of these vectors being position vectors. However, for arbitrary variables, we can make an analogous argument saying that the action of the permutation operator should be independent of the variable it acts on. If this is getting too subtle do not worry about it- most discussion seems to gloss over these subtleties anyway.

Or, on the level of the full state, we can see that Eq. (5.3) implies that

$$\begin{aligned}\mathbb{P}|\psi\rangle &= \sum_{x,x'} a_{x,x'} \mathbb{P}|x, x'\rangle \\ &= \sum_{x,x'} -a_{x,x'} |x, x'\rangle = -|\psi\rangle.\end{aligned}\quad (5.4)$$

We now want to understand how the constraint $\mathbb{P}|\psi\rangle = -|\psi\rangle$ effects the allowed $a_{x,x'}$ values. To do this, note that

$$\begin{aligned}|\psi\rangle &= \sum_{x,x'} a_{x,x'} |x, x'\rangle \\ &= \sum_{x,x'} -a_{x,x'} |x', x\rangle \\ &= \sum_{x,x'} -a_{x',x} |x, x'\rangle\end{aligned}\quad (5.5)$$

where in the first line we use Eq. 5.3 and in the second (as we are summing over both x and x') we are free to perform the relabelling $x \rightarrow x'$ and $x' \rightarrow x$. Thus comparing the first and final line of Eq. (5.5) we see that

$$a_{x,x'} = -a_{x',x} \quad (5.6)$$

and

$$a_{x,x} = 0. \quad (5.7)$$

This is the core of what is known as the **Pauli exclusion principle** - no two fermions can occupy the same single particle quantum state. Note that while no two fermions with the same spin can occupy the same position, if the fermions spin differ then there can be a non-zero amplitude of finding the two fermions at the same position. That is, electrons in different spin states can be in the same place but electrons in the same spin state avoid one another³.

Any expansion of a two-fermion state, i.e., Eq. (5.2), involves an even number of terms because from Eq. (5.6) any term of the form $a_{x,x'}$ comes with its negative swapped partner $-a_{x',x}$. The simplest such state of this form corresponds to the case where each electron can take one of two different spin states. Let us label these $|0\rangle$ and $|1\rangle$ and so as $a_{0,1} = -a_{1,0}$ and $a_{0,0} = a_{1,1} = 0$, we obtain

$$|\psi\rangle \propto |0, 1\rangle - |1, 0\rangle \rightarrow |\psi\rangle = \frac{1}{\sqrt{2}} (|0, 1\rangle - |1, 0\rangle) := |\Psi_-\rangle. \quad (5.8)$$

Thus we see that the simplest possible two particle fermionic state is the singlet Bell state $|\Psi_-\rangle$. To check that this works we note that:

$$\mathbb{P}|\psi\rangle = \frac{1}{\sqrt{2}} (\mathbb{P}|0, 1\rangle - \mathbb{P}|1, 0\rangle) = \frac{1}{\sqrt{2}} (|1, 0\rangle - |0, 1\rangle) = -\frac{1}{\sqrt{2}} (|0, 1\rangle - |1, 0\rangle) = -|\psi\rangle. \quad (5.9)$$

Boson. Let us now see what happens if we repeat the same calculation above but suppose the identical particles are bosons. This time we have $\mathbb{P}|x, x'\rangle = |x', x\rangle = |x, x'\rangle$, and so we can write

$$|\psi\rangle = \sum_{x,x'} a_{x,x'} |x, x'\rangle = \sum_{x,x'} a_{x,x'} |x', x\rangle = \sum_{x,x'} a_{x',x} |x, x'\rangle, \quad (5.10)$$

where in the second equality we relabel $x \rightarrow x'$ and $x' \rightarrow x$. It follows that

$$a_{x,x'} = a_{x',x}. \quad (5.11)$$

³There is a cliched comparison you could make here between electrons and fashionable folk accidentally in the same outfit at a party not wanting to be seen together.

This time we can have non-zero amplitudes for both particles to be in the same state, i.e., have $a_{x,x} \neq 0$. But any amplitude of the form $a_{x,x'}$ comes with an identical amplitude of the form $a_{x',x}$. Consider two photons that can be in the states $|0\rangle$ or $|1\rangle$, the allowed basic states are

$$|0,0\rangle, |1,1\rangle, \frac{1}{\sqrt{2}}(|0,1\rangle + |1,0\rangle). \quad (5.12)$$

We can then of course also consider superpositions of these states, e.g. $\cos(\theta)|0,0\rangle + e^{i\phi}\sin(\theta)|1,1\rangle$.

5.2 Multiple identical particles

This reasoning generalizes to systems of n particles, where $n \in \mathbb{N}$. Let $\psi(\mathbf{r}_1, \dots, \mathbf{r}_n)$ be the wave function of the system. First of all, note that exchanging particle j and particle k for $j, k \in \{1, \dots, n\}$ is equivalent to exchanging particle k and particle j , i.e., $\mathbb{P}_{j,k} = \mathbb{P}_{k,j}$. Furthermore,

$$\begin{aligned} \mathbb{P}_{j,k}(\mathbb{P}_{j,k}\psi(\mathbf{r}_1, \dots, \mathbf{r}_j, \dots, \mathbf{r}_k, \dots, \mathbf{r}_n)) &= \mathbb{P}_{j,k}(\psi(\mathbf{r}_1, \dots, \mathbf{r}_j, \dots, \mathbf{r}_k, \dots, \mathbf{r}_n)) \\ &= \psi(\mathbf{r}_1, \dots, \mathbf{r}_j, \dots, \mathbf{r}_k, \dots, \mathbf{r}_n) \\ &= \mathbb{1}(\psi(\mathbf{r}_1, \dots, \mathbf{r}_j, \dots, \mathbf{r}_k, \dots, \mathbf{r}_n)), \end{aligned}$$

so, $\mathbb{P}_{j,k}\mathbb{P}_{j,k} = \mathbb{1}$, and $\mathbb{P}_{j,k}^{-1} = \mathbb{P}_{j,k} = \mathbb{P}_{k,j}$. Finally, the sign of the operator $\mathbb{P}_{j,k}$ must be the same for all $j, k \in \{1, \dots, n\}$. In fact:

$$\mathbb{P}_{j,k} = \mathbb{P}_{1,j}\mathbb{P}_{2,k}\mathbb{P}_{1,2}\mathbb{P}_{2,k}\mathbb{P}_{1,j}.$$

A "permutation operator" is an operator of the form $\mathbb{P} = \prod \mathbb{P}_{j,k}$. It follows that wavefunctions corresponding to eigenvalues of a permutation operator are either symmetric or antisymmetric. This is the *symmetry postulate*, which can be restated as follows:

Symmetrisation Postulate (Cohen-Tannoudji, Diu, Laloe, 1977) : When a system includes several identical particles, only certain kets of its state space can describe its physical state. Physical kets are, depending on the nature of its identical particles, either completely symmetric or completely anti-symmetric with respect to the permutation of these particles. Those particles for which the physical kets are symmetric are called bosons, and those for which they are antisymmetric, fermions.

Notice that this has important consequences in the description of the physics of the system. Consider, for example, an arbitrary observable \hat{O} of the system. Using the above, its average value must satisfy, for all $j, k \in \mathbb{N}$:

$$\langle \psi | \hat{O} | \psi \rangle = \langle \psi | \mathbb{P}_{j,k}^\dagger \hat{O} \mathbb{P}_{j,k} | \psi \rangle,$$

which implies $\hat{O} = \mathbb{P}_{j,k}^\dagger \hat{O} \mathbb{P}_{j,k}$, and the operator $\mathbb{P}_{j,k}$ commutes with all observables. In particular, if \hat{H} is the system's Hamiltonian, $[\mathbb{P}_{jk}, \hat{H}] = [\hat{H}, \mathbb{P}_{jk}]$ for all $j, k \in \mathbb{N}$. Physically, this result is expected: Since the particles are assumed to be identical, there is no reason for the system's Hamiltonian to be modified by the exchange of two particles. As per what was previously discussed, since all $\mathbb{P}_{j,k}$ have the same sign, we can always simultaneously diagonalize \mathbb{P} and \hat{H} . In other words, $[\mathbb{P}, \hat{H}] = 0$ for any operator \mathbb{P} .

5.2.1 Bosons

Let's now consider the possible basis states for a system of n Bosons. For two Bosons these were:

$$|00\rangle, |11\rangle, \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle). \quad (5.13)$$

This can equivalently be written as

$$|\psi_{\mathbf{x}}\rangle \propto \sum_{\mathbb{P} \in S_2} \mathbb{P}|x_1, x_2\rangle = \sum_{\mathbb{P} \in S_2} |\mathbf{x}_{\mathbb{P}(1)}\rangle |\mathbf{x}_{\mathbb{P}(2)}\rangle \quad (5.14)$$

where $\mathbf{x} = (x_1, x_2)$ and S_n is the symmetric group on n elements. We will formally define S_n later in term, for now just think of it as the set of all possible permutations of n objects. When $n = 2$ this is just the identity operation and the swap operation. For example, for the case of $x_1 = 0, x_2 = 0$ we have

$$|\psi_{\mathbf{x}}\rangle \propto \sum_{\mathbb{P} \in S_2} \mathbb{P}|00\rangle = \mathbb{I}|00\rangle + \mathbb{P}_{12}|00\rangle = |00\rangle + |00\rangle = 2|00\rangle \xrightarrow{\text{normalization}} |00\rangle \quad (5.15)$$

where as for $x_1 = 0, x_2 = 1$ we have

$$|\psi_{\mathbf{x}}\rangle \propto \sum_{\mathbb{P} \in S_2} \mathbb{P}|01\rangle = \mathbb{I}|01\rangle + \mathbb{P}_{12}|01\rangle = |01\rangle + |10\rangle \xrightarrow{\text{normalization}} \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle). \quad (5.16)$$

Thus we see that Eq. (5.14) gives the correct expression for the basis states up to normalization. This expression generalizes to an n particles system as you would expect:

$$|\psi_{\mathbf{x}}\rangle = \mathcal{N} \sum_{\mathbb{P} \in S_n} \mathbb{P}|x_1, x_2, \dots, x_n\rangle \propto \sum_{\mathbb{P} \in S_n} \mathbb{P}|x_1, x_2, \dots, x_n\rangle = \sum_{\mathbb{P} \in S_n} |\mathbf{x}_{\mathbb{P}(1)}\rangle |\mathbf{x}_{\mathbb{P}(2)}\rangle \dots |\mathbf{x}_{\mathbb{P}(n)}\rangle. \quad (5.17)$$

where \mathcal{N} is a normalization factor. For example, if we consider a three particle system and $x_1 = 0, x_2 = 0, x_3 = 1$, as expected we obtain

$$\begin{aligned} |\psi_{\mathbf{x}}\rangle &\propto \sum_{\mathbb{P} \in S_3} \mathbb{P}|001\rangle = \mathbb{I}|001\rangle + \mathbb{P}_{12}|001\rangle + \mathbb{P}_{13}|001\rangle + \mathbb{P}_{23}|001\rangle + \mathbb{P}_{123}|001\rangle + \mathbb{P}_{132}|001\rangle \\ &= |001\rangle + |001\rangle + |100\rangle + |010\rangle + |100\rangle + |010\rangle \\ &= |001\rangle + |010\rangle + |001\rangle \\ &\xrightarrow{\text{normalization}} \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |001\rangle). \end{aligned} \quad (5.18)$$

What about the normalization factor \mathcal{N} ? Well, there are $n!$ ways of permuting n objects. If the vector \mathbf{x} contains no repeated entries then each of the corresponding states resulting from the permutation are unique and the normalization is simply $\frac{1}{\sqrt{n!}}$. If there are repeated entries however (e.g. as we saw in Eq.(5.15)) you get an extra factor in the numerator that needs to be accounted for. Specifically, if you have n_k repeated entries you have $n_k!$ identical terms in the sum. Hence the normalization factor is

$$\mathcal{N} = \frac{1}{\sqrt{n!} \sqrt{\prod_k n_k!}} \quad (5.19)$$

where $\sum_k n_k = n$. *Exercise: Derive Eq. (5.19) for yourself more carefully.*

5.2.2 Fermions

It is also possible to write a general expression for the basis states of a Fermion. In analogy with Eq. (5.17) above, one has

$$|\psi_{\mathbf{x}}\rangle = \frac{1}{\sqrt{n!}} \sum_{\mathbb{P} \in S_n} \text{sign}(\mathbb{P}) \mathbb{P}|x_1, x_2, \dots, x_n\rangle. \quad (5.20)$$

where $\text{sign}(\mathbb{P}) = -1$ if \mathbb{P} involves an odd number of index swaps and $\text{sign}(\mathbb{P}) = 1$ if \mathbb{P} involves an even number of index swaps. We note that given the Pauli exclusion principle, no two Fermions can be in the same state (i.e. $n_k = 1$ for all k), so each state in the sum here is unique and so the normalization is simply $\frac{1}{\sqrt{n!}}$.

5.3 Distinguishing identical particles

At this point, it is perhaps valuable to take a step back and think about how the symmetrisation postulate fits with our understanding of the physics of quantum particles / the world around us more generally.

As the universe is a system containing large numbers of identical particles, the symmetrisation postulate tells us that all identical particles in the universe are in a state with particles of the same type that is symmetric or anti-symmetric under exchange. Either way, as the global phase in quantum mechanics does not correspond to anything physical, this entails that all identical particles of the same type are in a (typically highly entangled!) permutation invariant state. It follows that all identical particles, understood as represented by the indices in the quantum state, share with other particles of the same type both their intrinsic properties and state dependent properties⁴.

However, this description of fundamental particles is far from our usual treatment of identical particles. An electron is a fermion but we do not usually think of electrons as being permutable and in exactly the same state as every other particle in the universe. Rather electrons are charge carriers in wires, they are in the shells of atoms, they exist in plasmas and so forth. We take electrons to exist wholly within reasonably well defined finite systems.

In practice, we are able to talk about electrons in such reasonably well defined localised roles by identifying stable dynamical properties. These stable dynamical properties enable us to distinguish subsystems of the total symmetrised state of fermions. These stable dynamical properties will typically be spatial. However, they need not be.

Consider a state of two identical particles in the orthogonal states $|\phi\rangle$ and $|\psi\rangle$. The state of the system can be described by:

$$|\Psi\rangle = \frac{1}{\sqrt{2}}[1 + \epsilon \mathbb{P}_{12}]|\phi, \psi\rangle \quad (5.21)$$

where $\epsilon = 1$ for bosons and $\epsilon = -1$ for fermions.

Say we are interested in the observable \hat{Q} where $\hat{Q}|u_i\rangle = q_i|u_i\rangle$. Using the Born rule, the probability amplitude, of obtaining q_i and q_j on measurement, is:

$$\begin{aligned} & 1/2 \langle u_i, u_j | [1 + \epsilon \mathbb{P}_{21}^\dagger][1 + \epsilon \mathbb{P}_{21}] |\phi, \psi\rangle \\ &= \langle u_i \phi \rangle \langle u_j \psi \rangle + \epsilon \langle u_i \psi \rangle \langle u_j \phi \rangle. \end{aligned}$$

The first term is known as the direct integral and the second is the exchange integral.

The state of a pair of non-identical (i.e. non-permutable) particles in the orthogonal states $|\phi\rangle$ and $|\psi\rangle$ respectively is written $|\psi\rangle \otimes |\phi\rangle$. In this case, the probability of measuring q_i, q_j is simply $|\langle u_i \psi \rangle \langle u_j \phi \rangle|^2$. This suggests the following operational claim: Particle permutation between a pair of particles can be ignored when either the direct or exchange integral between that pair of particles vanishes. Otherwise, the symmetry postulate entails that permutation must be taken into account.

⁴Identical particles have the same ‘state dependent properties’ in the sense that they all have the same reduced density operator (obtained by taking the partial trace).

One way in which one of the integrals can disappear is if both the particles and the measuring devices are spatially separated. Say, the wavepackets of the identical particles are well localised and spatially separated such that $\langle x|\psi\rangle = 0$ if x is in the region R and $\langle x|\phi\rangle = 0$ if x is in the region L . Similarly, suppose the measuring device wavepackets are spatially separated such that $\langle x|u_i\rangle = 0$ if x is in the region R and $\langle x|u_j\rangle = 0$ if x is in the region of L . Thus we have

$$\langle u_j|\psi\rangle = \sum_x \langle u_j|x\rangle \langle x|\psi\rangle = 0 \quad (5.22)$$

and as such the exchange integral disappears⁵. When this is the case we can identify each particle by its well defined positions and we say things like ‘the particle on the left is in state ψ ’ and ‘the particle on the right is in state ϕ ’ and write $|\psi, \phi\rangle$ where the left and right slots correspond to the left and right electrons respectively.

We make use of the vanishing exchange integral between pairs of spatially separated systems and measuring devices when we wish to consider a particular subset of particles in the universe. We can consider a pair of electrons in a shell of helium and treat these two electrons as permutable, without needing to consider permutations between these two electrons and all other electrons in the universe. It is also the reason why, combined with the fact that the position and spin operators commute, we do not have to take into account the symmetric spatial part of the wavefunction in Bell type experimental setups.

However, there is nothing fundamentally special about position. We could equally have used a different stable dynamical property to distinguish the particles. For example, if spin dependent interactions are negligible in a scattering experiment then the different spin alignments of a pair of particles can be used to treat the two particles that scatter as non-permutable. Consider the following initial state for the collision problem sketched in Fig. 5.1,

$$|\Psi_{\text{initial}}\rangle = \frac{1}{\sqrt{2}}[1 + \epsilon \mathbb{P}_{12}] |p_{\mathbf{z}}, +, -p_{\mathbf{z}}, -\rangle. \quad (5.23)$$

Here $|p_{\mathbf{z}}, +\rangle$ denotes the state of the particle with momentum in the positive z direction and spin z of $+\frac{1}{2}$ (and conversely for $|-p_{\mathbf{z}}, -\rangle$). Say we are interested in knowing the probability that the system is in the final state

$$|\Psi_{\text{final}}\rangle = \frac{1}{\sqrt{2}}[1 + \epsilon \mathbb{P}_{12}] |p_{\mathbf{v}}, +, -p_{\mathbf{v}}, -\rangle \quad (5.24)$$

where $\pm p_{\mathbf{v}}$ denotes momentum in the plus and minus \mathbf{v} directions sketched in Fig. 5.1b).

The evolution operator responsible for the collision, $\hat{U}(t, t_0)$, commutes with the permutation operator. Thus we have

$$\hat{U}(t, t_0) |\Psi_{\text{initial}}\rangle = \frac{1}{\sqrt{2}}(\hat{U}(t, t_0) |p_{\mathbf{z}}, +, -p_{\mathbf{z}}, -\rangle + \epsilon \hat{U}(t, t_0) |-p_{\mathbf{z}}, -, p_{\mathbf{z}}, +\rangle) \quad (5.25)$$

and so

$$\langle \Psi_{\text{final}} | \hat{U}(t, t_0) | \Psi_{\text{initial}} \rangle \propto \langle p_{\mathbf{v}}, +, -p_{\mathbf{v}}, - | \hat{U}(t, t_0) | p_{\mathbf{z}}, +, -p_{\mathbf{z}}, -\rangle + \epsilon \langle p_{\mathbf{v}}, +, -p_{\mathbf{v}}, - | \hat{U}(t, t_0) | -p_{\mathbf{z}}, -, p_{\mathbf{z}}, +\rangle \quad (5.26)$$

⁵There is nothing significant about the exchange rather than direct integral disappearing. I could have swapped the location of the measurement devices for the converse.

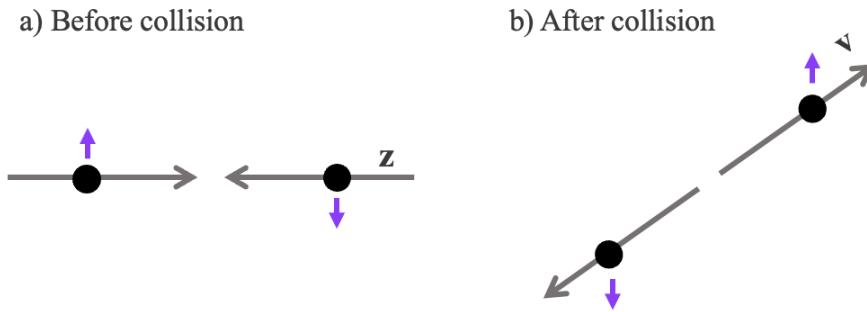


Figure 5.1: Diagram of a collision experiment with no spin interaction ((Cohen-Tannoudji, Diu, Laloe, 1977).)

Now we are interested in the case where $\hat{U}(t, t_0)$ does not affect spin interactions. As such, the exchange term is sandwiched between two orthogonal states and vanishes, and so we are left with

$$\langle \Psi_{\text{final}} | \hat{U}(t, t_0) | \Psi_{\text{initial}} \rangle \propto \langle p_{\mathbf{v}}, +, -p_{\mathbf{v}}, - | \hat{U}(t, t_0) | p_{\mathbf{z}}, +, -p_{\mathbf{z}}, - \rangle. \quad (5.27)$$

That is, we are left with the probability associated with two non-permutable particles.

In both the case of the spatially separated particles and the particle denoted by its spin, operationally we are free to work directly with states labelled according to their distinguishing properties:

$$\frac{1}{\sqrt{2}}(1 + \epsilon \mathbb{P}_{12}) |\phi, \psi\rangle \rightarrow |\phi\rangle_L \otimes |\psi\rangle_R \quad (5.28)$$

$$\frac{1}{\sqrt{2}}(1 + \epsilon \mathbb{P}_{12}) |p_{\mathbf{z}}, +, -p_{\mathbf{z}}, -\rangle \rightarrow |p_{\mathbf{z}}\rangle_+ | -p_{\mathbf{z}}\rangle_- \quad (5.29)$$

What do we conclude from these examples? The symmetrisation postulate is a fundamental theorem in quantum mechanics that implies that all identical fermions are in an anti-symmetric entangled state. However, this does not mean that we need to consider this state in practise most of the time. If there are stable dynamical properties to distinguish quantum two electrons over time, we can label those electrons by those properties and just those two properties (i.e. the electron on the left/the electron on the right or the spin up electron/spin down electron). In practise, this treatment of permutable particles is empirically successful and what we end up working with most of the time.

5.4 Second Quantization:

Second quantization is an approach used to represent systems composed of multiple particles. We consider a situation where the number of particles can potentially change, noting that a particle's state is entirely determined by the one-particle functions in the basis of \mathcal{H}_1 . We construct the *Fock space* where kets indicate the number of times a wave function is involved.

For example, the transformation from 1st quantisation (what we have been discussing so far in

this chapter) to second quantisation looks like

$$\begin{aligned} \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) &\rightarrow |11\rangle \\ |\uparrow\uparrow\rangle &\rightarrow |20\rangle \\ |\downarrow\downarrow\rangle &\rightarrow |02\rangle. \end{aligned} \quad (5.30)$$

Here the left and right slots in the Fock basis indicate the number of Bosons in the \uparrow and \downarrow states respectively. Similarly, for Fermions we could have

$$\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \rightarrow |11\rangle. \quad (5.31)$$

It's worth noting that for bosons, the n_i appearing in $|n_1, n_2, \dots\rangle$ can be arbitrary, while for fermions, they can only take the values 0 or 1 due to the Pauli exclusion principle. Also note that it's important once in the second quantisation to know whether the state you are looking at is a Fermionic or Bosonic state as, for example, a state of the form $|11\rangle$ could refer to either but behaves differently in the two cases.

We introduce creation and annihilation operators to increase or decrease the number of particles.

- The Bosonic case is entirely analogous with the case of a simple harmonic oscillator which you should be familiar with from Quantum Physics 1. Specifically we have:

$$\begin{cases} \hat{c}_i^\dagger |n_1, \dots, n_i, \dots\rangle = \sqrt{n_i + 1} |n_1, \dots, n_i + 1, \dots\rangle, \\ \hat{c}_i |n_1, \dots, n_i, \dots\rangle = \sqrt{n_i} |n_1, \dots, n_i - 1, \dots\rangle, \end{cases}$$

It follows that (*check this!*) that creation and annihilation operators in the bosonic case satisfy:

$$\begin{aligned} - [\hat{c}_i, \hat{c}_j] &= [\hat{c}_i^\dagger, \hat{c}_j^\dagger] = 0 \\ - [\hat{c}_i, \hat{c}_j^\dagger] &= \delta_{ij}. \end{aligned}$$

- The Fermionic case is much more subtle. In this case we need to ensure that the resulting states are antisymmetric under exchange. This can be achieved by defining the creation and annihilation operators as follows:

$$\begin{cases} \hat{c}_i^\dagger |n_1, \dots, n_i, \dots\rangle = (-1)^{n_1 + \dots + n_{i-1}} (1 - n_i) |n_1, \dots, n_i + 1, \dots\rangle, \\ \hat{c}_i |n_1, \dots, n_i, \dots\rangle = (-1)^{n_1 + \dots + n_{i-1}} n_i |n_1, \dots, n_i - 1, \dots\rangle, \end{cases}$$

To get a sense of the form of these expressions first notice that the $(1 - n_i)$ factor ensures that you cannot create Fermionic states with more than one particle in the same state.

The factor of $(-1)^{n_1 + \dots + n_{i-1}}$ then ensures the antisymmetrisation. For example, we require that $\hat{c}_0^\dagger \hat{c}_1^\dagger |00\rangle = -\hat{c}_1^\dagger \hat{c}_0^\dagger |00\rangle$. We indeed have this as $\hat{c}_0^\dagger \hat{c}_1^\dagger |00\rangle = \hat{c}_0^\dagger (-1)^0 |01\rangle = |11\rangle$ and $\hat{c}_1^\dagger \hat{c}_0^\dagger |00\rangle = \hat{c}_1^\dagger |10\rangle = (-1)^1 |11\rangle = -|11\rangle$. The general case can be understood by iterating this argument.

It is straightforward to verify (*check this!*) that the creation and annihilation operators in the fermionic case satisfy:

$$\begin{aligned} - \{\hat{c}_i, \hat{c}_j\} &= \{\hat{c}_i^\dagger, \hat{c}_j^\dagger\} = 0 \\ - \{\hat{c}_i, \hat{c}_j^\dagger\} &= \delta_{ij} \end{aligned}$$

where $\{A, B\} = AB + BA$.

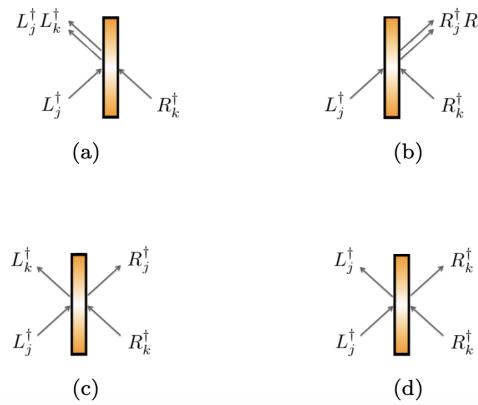


Figure 5.2: The Hong-Ou-Mandel effect and Bosonic bunching.

5.5 The Hong-Ou-Mandel Effect and Bosonic Bunching

To get a bit of practise of working in the second quantisation, and as another illustration of the difference between fermions and bosons, we'll end this chapter by presenting something called the Hong-Ou-Mandel (HOM) effect. The HOM effect describes what happens when two identical photons hit a beamsplitter. It shows that while fermions have a tendency to avoid each other, bosons have a tendency to clump together.

When working in the second quantisation it is often helpful to work in the Heisenberg picture and consider the action of any unitary process on the creation and annihilation operators rather than on a given state directly. Suppose we have a photon impinge on a 50-50 beamsplitter as shown in Fig. 5.3. Let \hat{L}_H , \hat{L}_V , \hat{R}_H , \hat{R}_V denote the annihilation operators for horizontally and vertically polarised photons on the left and right hand side of the beamsplitter. The action of this beamsplitter can be modelled in the Heisenberg picture as

$$\begin{aligned}\hat{L}_k^\dagger &\rightarrow \frac{1}{\sqrt{2}}(\hat{L}_k^\dagger + \hat{R}_k^\dagger) \\ \hat{R}_k^\dagger &\rightarrow \frac{1}{\sqrt{2}}(\hat{L}_k^\dagger - \hat{R}_k^\dagger)\end{aligned}\tag{5.32}$$

for $k = H$ and $k = V$ and where the minus sign in the second line above is to ensure unitarity.

When an H photon and a V photon (i.e. two perfectly distinguishable photons) impinge on opposite sides of a beamsplitter simultaneously we have

$$\begin{aligned}|1\rangle_{LH}|0\rangle_{LV}|0\rangle_{RH}|1\rangle_{RV} &= \hat{L}_H^\dagger \hat{R}_V^\dagger |0000\rangle \rightarrow \frac{1}{2}(\hat{L}_H^\dagger + \hat{R}_H^\dagger)(\hat{L}_V^\dagger - \hat{R}_V^\dagger)|0000\rangle \\ &= \frac{1}{2}(-|1\rangle_{LH}|0\rangle_{LV}|0\rangle_{RH}|1\rangle_{RV} + |1\rangle_{LH}|1\rangle_{LV}|0\rangle_{RH}|0\rangle_{RV} \\ &\quad - |0\rangle_{LH}|0\rangle_{LV}|1\rangle_{RH}|1\rangle_{RV} + |0\rangle_{LH}|1\rangle_{LV}|1\rangle_{RH}|0\rangle_{RV})\end{aligned}\tag{5.33}$$

That is, there are four equally probable outcomes as sketched in Fig. 5.3:

- (a) the photon from the right is transmitted and the photon from the left is reflected,
- (b) the photon from the left is transmitted and the photon from the right is reflected,

Fermions interfering

Bosons interfering

Figure 5.3: Credit: Nicolas Emile Bourquin

- (c) both photons are transmitted,
- (d) both photons are reflected.

However, when the two photons are indistinguishable, something intriguing happens. Suppose both photons are horizontally polarized (and the same frequency etc). In this case (dropping the unchanged vacuum V modes for simplicity) we have

$$\begin{aligned}
 |1\rangle_{LH}|1\rangle_{RH} &= \hat{L}_H^\dagger \hat{R}_H^\dagger |00\rangle \rightarrow \frac{1}{2}(\hat{L}_H^\dagger + \hat{R}_H^\dagger)(\hat{L}_H^\dagger - \hat{R}_H^\dagger)|00\rangle \\
 &= \frac{1}{2}(\hat{L}_H^\dagger)^2 - \hat{R}_H^\dagger)^2 |00\rangle \\
 &= \frac{1}{\sqrt{2}}(|2\rangle_{LH}|0\rangle_{RH} - |0\rangle_{LH}|2\rangle_{RH})
 \end{aligned} \tag{5.34}$$

The amplitude for both photons to be reflected by the BS and the amplitude for both photons to be transmitted through the BS have destructively interfered, and thus the probability for the photons to exit the beamsplitter through opposite sides vanishes. Indistinguishable photons are therefore guaranteed to leave a beamsplitter in the same mode, a phenomenon known as ‘bosonic bunching’.

Chapter 6

Perturbation Theory

Say you have some system H of an n particle system and want to calculate its eigenspectrum (i.e. its eigenvalues and eigenstates) or the dynamics it induces. In certain cases this is easy - e.g., if the n particles are non-interacting or if we can apply physics intuition to transform into some other clever basis where diagonalizing the Hamiltonian is easy. But generally this is hard and we need to resort to approximation techniques.

Perturbation theory is an approach to handling complex Hamiltonians by breaking up the Hamiltonian into 'easier' terms that you know how to diagonalize and small corrections that we can treat as inducing perturbative corrections. Exactly, how to do this in practise depends on whether there is or isn't a time dependence, whether there is or isn't degeneracy in the eigenstates, as well as the available computational power. Let's start with the simple non-degenerative time-independent case.

6.1 Non-degenerate Time-Independent Perturbation Theory

Let's consider a physical problem governed by a Hamiltonian \hat{H} , which we decompose as

$$\hat{H} = \hat{H}_0 + \lambda \hat{V} \quad (6.1)$$

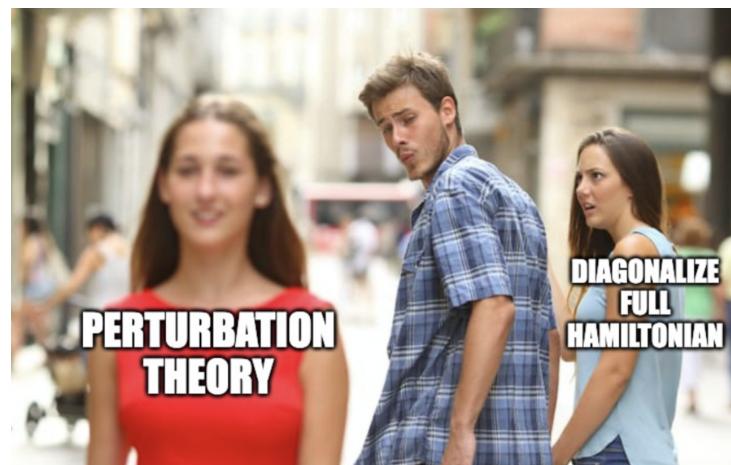


Figure 6.1: Caption

where \hat{H}_0 is a Hamiltonian with known eigenenergies and eigenstates (i.e. its the easy part) and $\lambda \in \mathbb{R}^+$ is a real positive parameter determining the strength of the additional term \hat{V} which is treated as a *perturbation* of the system. We are interested in studying the limit of this problem where λ is small (i.e., the limit of small perturbations).

Let $|\phi_n\rangle$ denote the *known* eigenstates of \hat{H}_0 and ϵ_n the associated eigenenergies. The goal of this section is to establish techniques to determine the eigenenergies of the total Hamiltonian \hat{H} . For sufficiently small perturbations λ , it is reasonable to assume that the eigenstates $|\psi_n\rangle$ of \hat{H} will be "close" to $|\phi_n\rangle$, and the associated energies E_n will be close to ϵ_n . In the limit of very small λ , the solution can be expanded in powers of λ :

$$|\psi_n\rangle = |\phi_n\rangle + \lambda |\psi_n^{(1)}\rangle + \lambda^2 |\psi_n^{(2)}\rangle + \dots \quad (6.2)$$

$$E_n = \epsilon_n + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots \quad (6.3)$$

And Schrödinger equation is written as:

$$\begin{aligned} (\hat{H}_0 + \lambda \hat{V}) \left(|\phi_n\rangle + \lambda |\psi_n^{(1)}\rangle + \lambda^2 |\psi_n^{(2)}\rangle + \dots \right) \\ = \left(\epsilon_n + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots \right) \left(|\phi_n\rangle + \lambda |\psi_n^{(1)}\rangle + \lambda^2 |\psi_n^{(2)}\rangle + \dots \right). \end{aligned} \quad (6.4)$$

Our goal is to find explicit expressions for the perturbations to the eigenstates $|\psi_n^{(k)}\rangle$ and corrections to the eigenenergies $E_n^{(k)}$ for $k = 1, 2, \dots$.

The equation 6.4 must be satisfied at each order in λ . This allows us to iteratively identify the corrections $E_n^{(k)}$ and $|\psi_n^{(k)}\rangle$.

Zero-th Order. At order 0 we simply have the unperturbed eigenvalue problem:

$$\hat{H}_0 |\phi_n\rangle = \epsilon_n |\phi_n\rangle.$$

1st Order. At order 1 we have:

$$\hat{H}_0 |\psi_n^{(1)}\rangle + \hat{V} |\phi_n\rangle = \epsilon_n |\psi_n^{(1)}\rangle + E_n^{(1)} |\phi_n\rangle, \quad (6.5)$$

To isolate the first order correction to the eigenenergy, $E_1^{(1)}$, we can bra through with $\langle \phi_n |$:

$$\langle \phi_n | \hat{H}_0 | \psi_n^{(1)} \rangle + \langle \phi_n | \hat{V} | \phi_n \rangle = \epsilon_n \langle \phi_n | \psi_n^{(1)} \rangle + \underbrace{E_n^{(1)} \langle \phi_n | \phi_n \rangle}_{=1} \quad (6.6)$$

$$\epsilon_n \langle \phi_n | \psi_n^{(1)} \rangle + \langle \phi_n | \hat{V} | \phi_n \rangle = \epsilon_n \langle \phi_n | \psi_n^{(1)} \rangle + E_n^{(1)} \quad (6.7)$$

where in the second line we have used $\hat{H}_0 |\phi_0\rangle = \epsilon_0 |\phi_0\rangle$. We therefore find that the first order correction to the energy of \hat{H}_0 due to \hat{V} is given by:

$$E_n^{(1)} = \langle \phi_n | \hat{V} | \phi_n \rangle \quad (6.8)$$

and so the eigenenergies of H to 1st order are:

$$E_n = \epsilon_n + \lambda \langle \phi_n | \hat{V} | \phi_n \rangle + \mathcal{O}(\lambda^2) \quad (6.9)$$

What about the first order correction to the eigenstate? Our goal will be to write the correction in the basis of the original eigenstates:

$$|\psi_n^{(1)}\rangle = \sum_m \langle \phi_m | \psi_n^{(1)} \rangle |\phi_m\rangle. \quad (6.10)$$

Thus we need to compute the overlaps $\langle \phi_m | \psi_n^{(1)} \rangle$. To do this we start with Eq. (6.5) but instead bra through with $\langle \phi_m |$. This gives

$$\langle \phi_m | \hat{H}_0 | \psi_n^{(1)} \rangle + \langle \phi_m | \hat{V} | \phi_n \rangle = \epsilon_n \langle \phi_m | \psi_n^{(1)} \rangle + \underbrace{E_n^{(1)} \langle \phi_m | \phi_n \rangle}_{=0} \quad (6.11)$$

$$\epsilon_m \langle \phi_m | \psi_n^{(1)} \rangle + \langle \phi_m | \hat{V} | \phi_n \rangle = \epsilon_n \langle \phi_m | \psi_n^{(1)} \rangle \quad (6.12)$$

which can be rearranged to give:

$$\langle \phi_m | \psi_n^{(1)} \rangle = \frac{\langle \phi_m | \hat{V} | \phi_n \rangle}{\epsilon_n - \epsilon_m}. \quad (6.13)$$

This looks promising but what is going on for $m = n$? To understand this remember that $\{|\psi_n\rangle\}$ are the eigenbasis of \hat{H} and so form a normalised eigenbasis with

$$\langle \psi_n | \psi_{n'} \rangle = \delta_{n,n'}. \quad (6.14)$$

For $m = n$ this constraint can be rewritten to first order in λ as

$$1 = \langle \psi_n | \psi_n \rangle = \langle \phi_n | \phi_n \rangle + \lambda(\langle \phi_n | \psi_n^{(1)} \rangle + \langle \psi_n^{(1)} | \phi_n \rangle) + \mathcal{O}(\lambda^2). \quad (6.15)$$

As λ is positive we therefore have that:

$$\langle \phi_n | \psi_n^{(1)} \rangle + \langle \psi_n^{(1)} | \phi_n \rangle = 2\Re(\langle \psi_n^{(1)} | \phi_n \rangle) = 0. \quad (6.16)$$

We are free to choose the global (unphysical) phase of the original eigenstates $|\phi_n\rangle$ such that $\langle \psi_n^{(1)} | \phi_n \rangle$ is purely real. Thus we end up with

$$\langle \phi_n | \psi_n^{(1)} \rangle = \langle \psi_n^{(1)} | \phi_n \rangle = 0. \quad (6.17)$$

Putting this all together we have that

$$|\psi_n^{(1)}\rangle = \sum_{m \neq n} \frac{\langle \phi_m | \hat{V} | \phi_n \rangle}{\epsilon_n - \epsilon_m} |\phi_m\rangle \quad (6.18)$$

and so the eigenstates of \hat{H} to 1st order are:

$$|\psi_n\rangle = |\phi_n\rangle + \lambda |\psi_n^{(1)}\rangle + \mathcal{O}(\lambda^2) = |\phi_n\rangle + \lambda \sum_{m \neq n} \frac{\langle \phi_m | \hat{V} | \phi_n \rangle}{\epsilon_n - \epsilon_m} |\phi_m\rangle + \mathcal{O}(\lambda^2). \quad (6.19)$$

2nd Order. At order 2 we have:

$$\hat{H}_0 |\psi_n^{(2)}\rangle + \hat{V} |\psi_n^{(1)}\rangle = \epsilon_n |\psi_n^{(2)}\rangle + E_n^{(1)} |\psi_n^{(1)}\rangle + E_n^{(2)} |\phi_n\rangle. \quad (6.20)$$

To get the second order energy correction we can again bra through with $\langle \phi_n |$ which gives:

$$\epsilon_n \langle \phi_n | \psi_n^{(2)} \rangle + \langle \phi_n | \hat{V} | \psi_n^{(1)} \rangle = \epsilon_n \langle \phi_n | \psi_n^{(2)} \rangle + E_n^{(1)} \langle \phi_n | \psi_n^{(1)} \rangle + E_n^{(2)}. \quad (6.21)$$

On cancelling terms, recalling that $\langle \phi_n | \psi_n^{(1)} \rangle = 0$ and substituting in Eq. (6.18), this gives:

$$E_n^{(2)} = \langle \phi_n | \hat{V} | \psi_n^{(1)} \rangle = \sum_{m \neq n} \frac{\langle \phi_m | \hat{V} | \phi_n \rangle}{\epsilon_n - \epsilon_m} \langle \phi_n | \hat{V} | \phi_m \rangle = \sum_{m \neq n} \frac{|\langle \phi_m | \hat{V} | \phi_n \rangle|^2}{\epsilon_n - \epsilon_m}. \quad (6.22)$$

For the second order correction to the eigenstate things start to become messy but you can keep on iterating this procedure to obtain an explicit expression for the eigenstates to second order. You'll be pleased to know I won't make you do this in this course.

Comment 1. The above calculation implicitly assumed that the energy levels are non-degenerate. If you have degenerate eigenvalues (i.e. two different eigenstates with the same energy) then the denominator in Eq. (6.18) blows up. We will come back to how to deal with this case later in this section.

Comment 2. For this approximation to be valid we need the second order correction to be small compared to the first order correction. How can we check this? To derive one way of checking let Δ be the energy difference between ϵ_n and the nearest energy level i.e. $\Delta = \min_m |\epsilon_n - \epsilon_m|$. Then we can write:

$$\begin{aligned} |E_n^{(2)}| &= \left| \sum_{m \neq n} \frac{|\langle \phi_m | \hat{V} | \phi_n \rangle|^2}{(\epsilon_n - \epsilon_m)} \right| \\ &\leq \sum_{m \neq n} \frac{|\langle \phi_m | \hat{V} | \phi_n \rangle|^2}{|\epsilon_n - \epsilon_m|} \\ &\leq \frac{1}{\Delta} \sum_{m \neq n} |\langle \phi_m | \hat{V} | \phi_n \rangle|^2 \\ &= \frac{1}{\Delta} \left(\sum_m \langle \phi_n | \hat{V} | \phi_m \rangle \langle \phi_m | \hat{V} | \phi_n \rangle - |\langle \phi_n | \hat{V} | \phi_n \rangle|^2 \right) \\ &= \frac{1}{\Delta} \left(\langle \phi_n | \hat{V}^2 | \phi_n \rangle - \langle \phi_n | \hat{V} | \phi_n \rangle^2 \right). \end{aligned}$$

The condition $|E_n^{(2)}| \ll |E_n^{(1)}|$ is satisfied as long as,

$$\frac{1}{\Delta} \left(\langle \phi_n | \hat{V}^2 | \phi_n \rangle - \langle \phi_n | \hat{V} | \phi_n \rangle^2 \right) \ll \langle \phi_n | \hat{V} | \phi_n \rangle, \quad (6.23)$$

or equivalently, as long as:

$$\left| \frac{\langle \phi_n | \hat{V}^2 | \phi_n \rangle}{\langle \phi_n | \hat{V} | \phi_n \rangle} - \langle \phi_n | \hat{V} | \phi_n \rangle \right| \ll \Delta. \quad (6.24)$$

A more restrictive but also easier-to-verify condition would be to require that the elements of the perturbation matrix are small compared to the energy level spacing. In other words, we impose:

$$\left| \frac{\langle \phi_m | \hat{V} | \phi_n \rangle}{\epsilon_n - \epsilon_m} \right| \ll 1.$$

6.1.1 Examples

Example 6.1.1. Harmonic Oscillator Exposed to a Constant Force. Suppose we consider particle in a Harmonic well subject to a constant force:

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2 - qEx. \quad (6.25)$$

We can write this Hamiltonian as $H = H_0 + \lambda V$ with

$$\begin{aligned} H_0 &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2 \\ V &= -qEx \end{aligned} \quad (6.26)$$

and $\lambda = 1$. We know the energies of H_0 , as this is just the simple harmonic oscillator with energies

$$\epsilon_n = \hbar\omega \left(n + \frac{1}{2} \right) \quad (6.27)$$

and eigenstates $|n\rangle$. To simplify things, we express V using the lowering and raising operators

$$V = -qEx = -qE \sqrt{\frac{\hbar}{2m\omega}} (a + a^\dagger) \quad (6.28)$$

with $a|n\rangle = \sqrt{n}|n-1\rangle$ and $a^\dagger|n\rangle = \sqrt{n+1}|n+1\rangle$. To find the 1st order corrections to the energies, we use $E_n^{(1)} = \langle n|V|n\rangle$:

$$E_n^{(1)} = -qE \sqrt{\frac{\hbar}{2m\omega}} \langle n|(a + a^\dagger)|n\rangle = 0 \quad (6.29)$$

and thus the first order correction to the energy vanishes ¹.

To find the 2nd order corrections to the energies, we write

$$E_n^{(2)} = \sum_{m \neq n} \frac{|\langle m|V|n\rangle|^2}{\epsilon_m - \epsilon_n} \quad (6.30)$$

$$= \frac{q^2 E^2 \hbar}{2m\omega} \sum_{m \neq n} \frac{|\langle m|(a + a^\dagger)|n\rangle|^2}{\hbar\omega(n-m)} \quad (6.31)$$

$$= \frac{q^2 E^2}{2m\omega^2} \sum_{m \neq n} \frac{|\langle m|(a + a^\dagger)|n\rangle|^2}{(n-m)}. \quad (6.32)$$

To simplify this we use the fact that $a|n\rangle = \sqrt{n}|n-1\rangle$ and $a^\dagger|n\rangle = \sqrt{n+1}|n+1\rangle$ to find

$$E_n^{(2)} = \frac{q^2 E^2 \hbar}{2m\omega} \sum_{m \neq n} \frac{|\sqrt{n}\langle m|n-1\rangle + \sqrt{n+1}\langle m|n+1\rangle|^2}{\hbar\omega(n-m)} \quad (6.33)$$

$$= \frac{q^2 E^2}{2m\omega^2} \left(\frac{|\sqrt{n}|^2}{n - (n-1)} + \frac{|\sqrt{n+1}|^2}{n - (n+1)} \right) \quad (6.34)$$

$$= -\frac{q^2 E^2}{2m\omega^2} \quad (6.35)$$

So, up to second order, we have

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right) - \frac{q^2 E^2}{2m\omega^2}. \quad (6.36)$$

Note that for this simple example you can just solve this Hamiltonian exactly by seeing that a constant force simply shifts the equilibrium position (the position where the force vanishes) to $x_0 = qE/(m\omega^2)$ as

$$\begin{aligned} H &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2 - qEx = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 \left(x - \frac{qE}{m\omega^2} \right)^2 - \left(\frac{qE}{m\omega^2} \right)^2 \\ &= \frac{p^2}{2m} + \frac{1}{2}m\omega^2(x - x_0)^2 - \frac{1}{2}m\omega^2x_0^2. \end{aligned} \quad (6.37)$$

Thus you can see that the perturbation reduces the energy by $\frac{1}{2}m\omega^2x_0^2 = \frac{q^2 E^2}{2m\omega^2}$. We therefore see that in this case 2nd order perturbation theory gives us the exact values of energies for the Hamiltonian. However, this is only true for this simple example and not generally the case.

¹An alternative way of seeing this would be to note that $|n\rangle$ are even under reflections $x \rightarrow -x$ but x is of course odd and the above equation corresponds to integrating an odd function for $x = -\infty$ to $x = \infty$.

Example 6.1.2. Potential of a Diatomic Molecule. Consider the following Hamiltonian $\hat{H} = \hat{H}_0 + \hat{V}$ with:

$$\begin{cases} \hat{H}_0 = \frac{\hat{p}^2}{2} + \frac{\hat{x}^2}{2}, \\ \hat{V} = c\hat{x}^3 + q\hat{x}^4, \end{cases}$$

for $c \geq 0$ and $q \leq 0$. Note that to make our life less miserable here we have picked units such that $\hbar\omega = m = 1$ (in contrast to the previous example).

Figure 6.2: Correction to the potential

The energy and eigenstates of \hat{H}_0 for the system are already known- this is just a standard quantum harmonic oscillator. Concretely, we have $\epsilon_n = (n + \frac{1}{2})$. The goal is to determine the $E_n^{(k)}$ for a fixed n . From Eq. (6.9) the first order correction to the eigenenergies is given by:

$$E_n^{(1)} = \langle n | c\hat{x}^3 + q\hat{x}^4 | n \rangle.$$

To evaluate this let's introduce creation and annihilation operators such that $\hat{x} = \hat{a} + \hat{a}^\dagger$. It is immediately noticed that the term $c\hat{x}^3$ does not contribute because only terms with the same number of \hat{a}^\dagger and \hat{a} operators give rise to non-zero coefficients (alternatively, note that the eigenstates $|n\rangle$ are symmetric under $\hat{x} \rightarrow -\hat{x}$). Next we note that:

$$\begin{aligned} \hat{x}^4 &= (\hat{a} + \hat{a}^\dagger)^4 = ((\hat{a})^2 + \hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a} + \hat{a}^{\dagger 2})^2 \\ &= (\hat{a})^4 + (\hat{a})^2\hat{a}^{\dagger 2} + (\hat{a})^3\hat{a}^\dagger + (\hat{a})^2\hat{a}^\dagger\hat{a} \\ &\quad + \hat{a}^{\dagger 2}(\hat{a})^2 + \hat{a}^{\dagger 4}\hat{a}^{\dagger 2}\hat{a}\hat{a}^\dagger + \hat{a}^{\dagger 3}\hat{a} + \hat{a}\hat{a}^\dagger(\hat{a})^2 \\ &\quad + \hat{a}\hat{a}^{\dagger 3} + \hat{a}\hat{a}^\dagger\hat{a}\hat{a}^\dagger + \hat{a}\hat{a}^\dagger\hat{a}^\dagger\hat{a} + \hat{a}^\dagger(\hat{a})^3 \\ &\quad + \hat{a}^\dagger\hat{a}\hat{a}^{\dagger 2} + \hat{a}^\dagger\hat{a}\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}\hat{a}^\dagger\hat{a} \\ &= (\hat{a})^2\hat{a}^{\dagger 2} + \hat{a}^{\dagger 2}(\hat{a})^2 + \hat{a}\hat{a}^\dagger\hat{a}^\dagger\hat{a} + \hat{a}^\dagger\hat{a}\hat{a}\hat{a}^\dagger + \hat{a}\hat{a}^\dagger\hat{a}\hat{a}^\dagger + \hat{a}^\dagger\hat{a}\hat{a}^\dagger\hat{a}, \end{aligned}$$

where the last equality is obtained by again noting that only terms with equal numbers of creation and annihilation operators lead to non-zero contributions. Thus (after a bunch of algebra which I will leave it up to you to fill in) we find:

$$\langle n | (\hat{a}^\dagger + \hat{a})^4 | n \rangle = \langle n | (\hat{a})^2 \hat{a}^{\dagger 2} | n \rangle + \langle n | \hat{a}^{\dagger 2} (\hat{a})^2 | n \rangle + \langle n | \hat{a}\hat{a}^\dagger \hat{a}^\dagger\hat{a} | n \rangle + \langle n | \hat{a}^\dagger\hat{a}\hat{a}\hat{a}^\dagger | n \rangle + \langle n | \hat{a}\hat{a}^\dagger\hat{a}\hat{a}^\dagger | n \rangle + \langle n | \hat{a}^\dagger\hat{a}\hat{a}^\dagger\hat{a} | n \rangle =$$

And so we have

$$\epsilon_n \approx \left(n + \frac{1}{2} \right) - 6|q| \left(n^2 + n - \frac{1}{2} \right). \quad (6.38)$$

6.2 Degenerate Time-Independent Perturbation Theory

As mentioned earlier, the approach described above fails when \hat{H}_0 has degenerate eigenvalues because of terms of the form $\frac{1}{\epsilon_n - \epsilon_m} = \frac{1}{0}$ in Eq. (6.18). In this section we show how we can deal with this case.

For simplicity, we assume for now that only for the n_{th} energy state is there an N -fold degeneracy. That is, we suppose that the initial Hamiltonian H_0 has energy ϵ_n with N degenerate states ϕ_{n_i} , $i = 1, \dots, N$.

Let us start by finding the first order corrections $E_n^{(1)}$. To do so, we expand our eigenstate $|\psi_n\rangle$ in powers of λ . However, this time we replace the 0-th order term $|\phi_n\rangle$ with a linear combination $\sum_j c_j |\phi_{n_j}\rangle$ of the degenerate states because we are unsure of what combination of these states yields the “correct” 0-th order contribution to $|\psi_n\rangle$. That is, we can write:

$$|\psi_n\rangle = \sum_j c_j |\phi_{n_j}\rangle + \lambda |\psi_n^{(1)}\rangle + \lambda^2 |\psi_n^{(2)}\rangle + \dots \quad (6.39)$$

and the energy is given by

$$E_n = \epsilon_n + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots \quad (6.40)$$

as previously. Again, working from the Schrödinger equation $H|\psi_n\rangle = E_n|\psi_n\rangle$ to first order in λ we have:

$$H_0|\psi_n^{(1)}\rangle + \sum_j c_j V |\phi_{n_j}\rangle = \epsilon_n |\psi_n^{(1)}\rangle + E_n^{(1)} \sum_j c_j |\phi_{n_j}\rangle$$

Similarly to the non-degenerate case we next bra through with $\langle \phi_{n_i}|$,

$$\langle \phi_{n_i} | H_0 | \psi_n^{(1)} \rangle + \sum_j c_j \langle \phi_{n_i} | V | \phi_{n_j} \rangle = \epsilon_n \langle \phi_{n_i} | \psi_n^{(1)} \rangle + E_n^{(1)} \sum_j c_j \langle \phi_{n_i} | \phi_{n_j} \rangle$$

and cancel the ϵ_n terms to give:

$$\sum_j \langle \phi_{n_i} | V | \phi_{n_j} \rangle c_j = E_n^{(1)} \sum_j c_j \langle \phi_{n_i} | \phi_{n_j} \rangle = E_n^{(1)} \sum_j c_j \delta_{ij} = E_n^{(1)} c_i$$

The terms $\langle \phi_{n_i} | V | \phi_{n_j} \rangle = V_{ij}$ are the matrix elements of V in the $\{|\phi_{n_i}\rangle\}$ basis of degenerate 0-th order states. Thus we have:

$$\sum_j V_{ij} c_j = E_n^{(1)} c_i$$

This is precisely an eigenvalue equation. The first order corrections $E_n^{(1)}$ are the eigenvalues of V in the degenerate state basis and the corresponding vectors $\mathbf{c} = \{c_i\}_i$ characterize the “correct” linear combination $\sum_j c_j |\phi_{n_j}\rangle$ in the 0-th order term of the eigenstate $|\psi_n\rangle$.

Finding eigenvalues and eigenvectors of a matrix are equivalent to diagonalizing it - so, when we carry out this procedure for finding the 1st order corrections to the energies of degenerate states, we just diagonalize the perturbation Hamiltonian V .

Comment 1. Note that in the context of perturbation theory for a non-degenerate physical system, the perturbation appears at order 1 in λ , while here we have a correction to the zero-th order state.

Comment 2. In general, a perturbation allows us to *lift degeneracy*, i.e., obtain energy corrections $E_{n,i}^{(1)}$ that are all different. Any remaining degeneracies are actually due to intrinsic symmetries, directly related to the physics of the problem. This links back to the previous comment - it is because the degeneracy is lifted that the 0th order contribution changes.

6.2.1 Examples

Example 6.2.1. Trivial example. We first note that this approach trivially works for the case of a Hamiltonian $H = H_0 + V$ with $H_0 = aI$. In this case eigenstates of H_0 are trivially degenerate and the eigenvalues and eigenvectors of the perturbed Hamiltonian can be found by finding the eigenvalues and eigenvectors of the perturbation V .

Example 6.2.2. The Stark Effect. The Stark effect is an important phenomenon in atomic physics where one observes the splitting of the degeneracy of one-electron atoms in an electric field. In this example we consider the Hamiltonian of a one-electron atom (e.g. Hydrogen) in a constant, uniform electric field E which points only in the z direction. We neglect spin in this example. (If you can't remember the physics of the hydrogen atom now is a good moment to recap it!) The Hamiltonian of such a system is

$$H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} - \frac{e^2}{4\pi\epsilon_0 r} - e\mathcal{E}z = H_0 + V$$

where V is identified with the term $-e\mathcal{E}z$. The n_{th} energy eigenvalue of the unperturbed Hamiltonian is n^2 -fold degenerate. In this example, we will consider the case of $n = 2$, which has a 4-fold degeneracy; the corresponding degenerate eigenstates are given in $|nlm\rangle$ notation by $|200\rangle, |211\rangle, |210\rangle, |21-1\rangle$.

To find the 0th order correction to the eigenstate and 1st order contribution to the eigenenergy we need to diagonalize V in the eigen-space spanned by $|200\rangle, |211\rangle, |210\rangle, |21-1\rangle$. I.e., we need to find the eigenvalues and eigenvectors of:

$$\tilde{V} = \begin{bmatrix} (200|V|200) & (200|V|210) & (200|V|211) & (200|V|21-1) \\ (210|V|200) & (210|V|210) & (210|V|211) & (210|V|21-1) \\ (211|V|200) & (211|V|210) & (211|V|211) & (211|V|21-1) \\ (21-1|V|200) & (21-1|V|210) & (21-1|V|211) & (21-1|V|21-1) \end{bmatrix} \quad (6.41)$$

This looks like a nasty thing to work with but luckily it turns out most of the terms are zero. Each of the 16 matrix elements is of the form:

$$V_{lm,l'm'} = \langle 2, l, m | z | 2, l', m' \rangle = \iiint u_{lm}^*(r \cos \theta) u_{l'm'} r^2 \sin \theta d\theta d\theta d\phi dr \quad (6.42)$$

where we recall that

$$\begin{aligned} u_{00} &\propto \left(1 - \frac{r}{2a_0}\right) e^{-r/2a_0} \\ u_{10} &\propto r \cos \theta e^{-r/2a_0} \\ u_{11} &\propto r \sin \theta e^{i\phi} e^{-r/2a_0} \\ u_{1-1} &\propto r \sin \theta e^{-i\phi} e^{-r/2a_0} \end{aligned} \quad (6.43)$$

where a_0 is the Bohr radius. Looking first at parity, it is clear that $z = r \cos(\theta)$ has odd parity. And thus any term along the diagonal is the integral over an odd function and so is zero. Similar parity arguments apply for $V_{1-1,11}$ terms. Secondly, $\int_0^{2\pi} e^{i\phi} d\phi = 0$, so any term with a single u_{11}

or u_{1-1} contribution vanishes, e.g. $V_{00,1-1} = V_{11,00} = V_{1-1,00} = 0$. Thus we end up with only two non-zero terms corresponding to $V_{00,01}$. Thus we have left with:

$$\tilde{V} = \begin{bmatrix} 0 & \alpha & 0 & 0 \\ \alpha^* & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

where (if you do the integrals) $\alpha = -3e\mathcal{E}a_0$. It is now easy to see² that the eigenvalues of \tilde{V} are $\pm 3e\mathcal{E}a_0$ and 0. The corresponding eigenkets are $2^{-1/2}(1, \pm 1, 0, 0)$, $(0, 0, 1, 0)$ and $(0, 0, 0, 1)$ (with the final two eigenstates still degenerate). We conclude that as soon as the slightest perturbation is switched on, the system is in the state of lowest energy, i.e.,

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|200\rangle + |210\rangle) \quad (6.44)$$

with energy $E_b = -3a_0e\mathcal{E}$.

²The top left hand block just corresponds to diagonalizing σ_x , and the lower block is just the all zero matrix.

Chapter 7

Time-dependent Hamiltonians

So far, we have focused on approximating the eigenstates and eigenvalues of systems described by time-independent Hamiltonians. What happens when we can no longer neglect time dependence? We want to solve the equation:

$$i\frac{\partial}{\partial t}|\phi(t)\rangle = \hat{H}(t)|\phi(t)\rangle. \quad (7.1)$$

Equivalently, we can always write

$$|\phi(t)\rangle = \hat{U}(t, t_0)|\phi(t_0)\rangle. \quad (7.2)$$

for some unitary $\hat{U}(t, t_0)$. If the Hamiltonian is time-independent, it has the form

$$\hat{U}(t, t_0) = e^{-i\hat{H}(t-t_0)}, \quad (7.3)$$

but when there is explicit time dependence we cannot use this simple expression. This chapter will give you some tools for computing the propagator in this case.

We will start by deriving something called the ‘Dyson series’. This gives an exact expression for the evolution operator of a quantum system with a time dependent Hamiltonian. Unfortunately this expression is in most cases so disgustingly messy that you can not do much with it. We will then explore the interaction representation which (partially) simplifies the picture. Finally, we will go back to perturbation theory (this time ‘time-dependent perturbation theory’) to show that if the time dependent part of the Hamiltonian is only a small perturbation then calculations again become nice and tractable.

7.1 Dyson series

I warn you that this is a slightly fiddly derivation - but it’s one of those derivations everyone needs to see at least once.

Plugging our expression for the evolution operator, Eq. (7.2), into the Schrodinger equation, Eq. (7.1), we have

$$i\frac{\partial}{\partial t}\hat{U}(t, t_0)|\phi(t_0)\rangle = \hat{H}(t)|\phi(t)\rangle. \quad (7.4)$$

As this holds for any state we thus have

$$\begin{cases} i \frac{\partial}{\partial t} \hat{U}(t, t_0) = \hat{H}(t) \hat{U}(t, t_0), \\ \hat{U}(t_0, t_0) = \mathbb{1}. \end{cases} \quad (7.5)$$

The exact time evolution operator in the case of a time dependent Hamiltonian is obtained by solving this system of equations. Integrating the first equation from t_0 to t gives:

$$\begin{aligned} i \int_{t_0}^t dt_1 \frac{\partial}{\partial t} \hat{U}(t_1, t_0) &= \int_{t_0}^t dt_1 \hat{H}(t_1) \hat{U}(t_1, t_0) \\ \implies i(\hat{U}(t, t_0) - \mathbb{1}) &= \int_{t_0}^t dt_1 \hat{H}(t_1) \hat{U}(t_1, t_0). \end{aligned}$$

Therefore,

$$\begin{aligned} \hat{U}(t, t_0) &= \mathbb{1} - i \int_{t_0}^t dt_1 \hat{H}(t_1) \hat{U}(t_1, t_0) \\ &= \mathbb{1} - i \int_{t_0}^t dt_1 \hat{H}(t_1) \left(\mathbb{1} - i \int_{t_0}^{t_1} dt_2 \hat{H}(t_2) \hat{U}(t_2, t_0) \right) \\ &= \mathbb{1} - i \int_{t_0}^t dt_1 \hat{H}(t_1) + (-i)^2 \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \hat{H}(t_1) \hat{H}(t_2) \hat{U}(t_2, t_0) \\ &= \mathbb{1} + \sum_{n=1}^{\infty} (-i)^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n \hat{H}(t_1) \hat{H}(t_2) \hat{H}(t_3) \cdots \hat{H}(t_n) \end{aligned} \quad (7.6)$$

where $t_i > t_{i-1}$ for all i . (Note that the final $\hat{U}(t_n, t_0)$ term vanishes, i.e, becomes an identity, in the limit that $n \rightarrow \infty$.)

This looks pretty messy and hard to work with. In particular, its a pain how each of the integrals range depend on other parameters we are integrating over. It would be much nicer if all the integrals were between t_0 and t . To do so ¹, we will need to introduce the *time ordering operator*, T . This is defined as follows:

$$T[H(t_1)H(t_2)\cdots H(t_n)] = H(t_{i_1})H(t_{i_2})\cdots H(t_{i_n}), \quad \text{where } t_{i_1} > t_{i_2} > \cdots > t_{i_n}. \quad (7.7)$$

That is, the time-ordering operator tells you to reorder the operators so the time arguments of the corresponding operators *decrease* as you go from the left to the right. You end up with an expression where the largest time appears in the argument of the first (left most) operator and the smallest time appears in the argument of the last (right most) operator. For example, if $t_2 > t_1$ then you have

$$T(H(t_1)H(t_2)) = H(t_2)H(t_1). \quad (7.8)$$

Ok, so how does this help to simplify Eq. (7.6)? To see how let's look at the term:

$$J_2 = \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \hat{H}(t_1) \hat{H}(t_2) \text{ with } t_2 \leq t_1. \quad (7.9)$$

In this expression the integration over t_2 is performed first from t_0 to t_1 , and then t_1 is integrated from t_0 to t . This represents all the pairs (t_1, t_2) where $t_2 \leq t_1 \leq t$. Geometrically, we can visualise this as looking for the area of the shaded area in Fig. 7.1(a). Now, as $t_2 \leq t_1$ we have $T[H(t_1)H(t_2)] = H(t_1)H(t_2)$ and so we are free to insert T into the above integral to give

$$J_2 = \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 H(t_1) H(t_2) = \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 T[H(t_1)H(t_2)] \quad (7.10)$$

¹In places here I am directly copying from these notes- you may prefer to go and read the original.

Next, we are free to change the order of integration (this is equivalent to integrating over the shaded region in Fig. 7.1(b) which is the same as the region in (a)). Thus we have

$$J_2 = \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 H(t_1)H(t_2) = \int_{t_0}^t dt_2 \int_{t_2}^t dt_1 H(t_1)H(t_2). \quad (7.11)$$

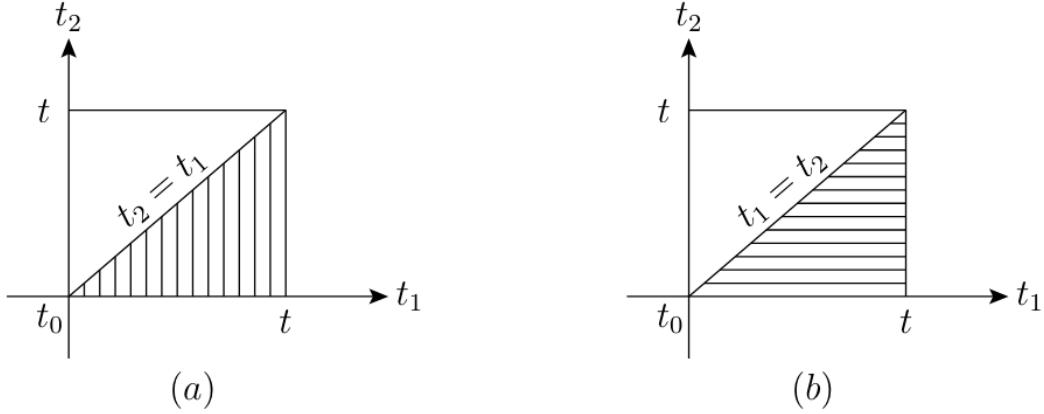


Figure 7.1: The integration region, $t_0 \leq t_1 \leq t$ and $t_0 \leq t_2 \leq t_1$, used in Eq. (7.10) (b) The integration region, $t_0 \leq t_2 \leq t$ and $t_2 \leq t_1 \leq t$, employed in Eq. (7.11) after interchanging the order of integration. (Image from this nice set of notes on the Dyson series.)

As the integration variables, t_1 and t_2 , are dummy labels, we can relabel the integration variables in the final expression in Eq. (7.11) with by $t_1 \rightarrow t_2$ and $t_2 \rightarrow t_1$ to give:

$$J_2 = \int_{t_0}^t dt_1 \int_{t_1}^t dt_2 H(t_2)H(t_1) = \int_{t_0}^t dt_1 \int_{t_1}^t dt_2 T[H(t_1)H(t_2)]. \quad (7.12)$$

In the second equality we have inserted the T symbol. As now $t_2 \geq t_1$ (after the relabelling), in this case we have $T[H(t_1)H(t_2)] = H(t_2)H(t_1)$. That is, the integration region now consists of the area of the half square above the diagonal line shown in Fig. 7.1(a).

We now have two different expressions for J_2 ,

$$J_2 = \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 T[H(t_1)H(t_2)] = \int_{t_0}^t dt_1 \int_{t_1}^t dt_2 T[H(t_1)H(t_2)]. \quad (7.13)$$

Therefore, $2J_2$ is equal to the sum of the two integrals given in Eq. (7.13). By adding the two integrals, the dependence on the integration limit t_1 disappears. The integration region is now the area bounded by the full square. After dividing by two, we end up with,

$$J_2 = \frac{1}{2} \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 T[H(t_1)H(t_2)]. \quad (28)$$

That is, we have successfully decoupled the limits.

Iterating this procedure, you find that the time evolution operator can be written in the form:

$$\hat{U}(t, t_0) = \mathbb{1} + \sum_{n=1}^{\infty} (-i)^n \frac{1}{n!} \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n T(\hat{H}(t_1) \cdots \hat{H}(t_n)). \quad (7.14)$$

Note the presence of the corrective factor $\frac{1}{n!}$ due to the fact that the integral over each of the $n!$ possible combinations of the positions of t_i remains the same because the operator \hat{T} always rearranges the t_i in such a way that they return to their initial positions. It is customary to condense the expression 7.14 into the form:

$$\hat{U}(t, t_0) = \hat{T} \left(e^{-i \int_{t_0}^t dt_1 \hat{H}(t_1)} \right). \quad (7.15)$$

Note 7.1.1. 1. If the Hamiltonian \hat{H} is independent of time, then clearly $[\hat{H}(t_i), \hat{H}(t_j)] = 0$ for all t_i, t_j . As such, the operator \hat{T} acts trivially on the product of Hamiltonians. So we have:

$$\begin{aligned} \hat{U}(t, t_0) &= \mathbb{1} + \sum_{n=1}^{\infty} (-i)^n \frac{1}{n!} \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \cdots \int_{t_0}^t dt_n \hat{T}(\hat{H}(t_1) \cdots \hat{H}(t_n)) \\ &= \mathbb{1} + \sum_{n=1}^{\infty} (-i)^n \frac{1}{n!} \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \cdots \int_{t_0}^t dt_n \hat{H}(t_1) \cdots \hat{H}(t_n), \end{aligned}$$

which, in exponential notation, gives $\hat{U}(t, t_0) = e^{-i \int_{t_0}^t dt_1 \hat{H}(t_1)}$. Moreover, since \hat{H} is independent of time, $\int_{t_0}^t dt' \hat{H}(t') = \hat{H}(t - t_0)$, and the time evolution operator can be rewritten as $\hat{U}(t, t_0) = (e^{-i \hat{H}(t - t_0)})$. As such we indeed recover the standard expression for the evolution under a time independent Hamiltonian (Eq.(7.3)).

2. In general, there is no guarantee that $\hat{T} \left(e^{-i \int_{t_0}^t dt_1 \hat{H}(t_1)} \right) = e^{-i \int_{t_0}^t dt_1 \hat{H}(t_1)}$. Therefore, you have to go back to the uncompressed expression 7.14 for \hat{U} and explicitly compute each term of the expansion before summing them. This is generally pretty painful unless you get lucky and a recurrence relation between all the terms is found. Therefore, we usually focus on situations where we can limit the expansion to a few terms.
3. In the context of quantum computing it is common to attempt to approximate $\hat{U}(t, t_0)$ by breaking the continuous time evolution down into discrete time steps and use:

$$\hat{U}(t, t_0) \approx \prod_j e^{-i \hat{H}(t_j) \delta t} := \hat{U}_{\text{disc}}(t, t_0).$$

where $\delta t = t/m_t$ for some integer m_t . It can be shown that the resulting approximation is upper bounded by

$$\left\| \int_{t_0}^t ds \hat{H}(s) - \delta t \sum_{r=1}^{m_t} \hat{H}(t_0 + r\delta t) \right\|^2 \quad (7.16)$$

where $\| \dots \|$ is any matrix norm that is unitarily invariant. The key thing to understand about this approximation is that you are effectively breaking the continuous evolution of the Hamiltonian down into discrete time blocks and assuming that each block (approximately) commutes.

7.2 Interaction Representation

You are already familiar with the formalism of quantum mechanics from the Heisenberg and Schrödinger perspectives. In this section, we introduce a new representation called the *interaction representation*.

Let's begin with some reminders:

1. In the Schrödinger representation, it is the states $|\phi_S(t)\rangle$ that explicitly depend on time. The evolution is governed by the following equation:

$$i\frac{\partial}{\partial t}|\phi_S(t)\rangle = \hat{H}(t)|\phi_S(t)\rangle.$$

In this representation, observables are fixed operators, and any time dependence they have, if at all, is intrinsic and not governed by \hat{H} .

2. In the Heisenberg viewpoint, the time dependence is instead transferred to the operators. The state vectors are assumed to be fixed, and their time dependence is intrinsic. The system's time evolution is governed by:

$$\begin{cases} |\phi_H(t)\rangle = |\phi_S(t_0)\rangle, \\ \hat{O}_H(t) = \hat{U}_S^\dagger(t, t_0)\hat{O}_S(t)\hat{U}_S(t, t_0) \end{cases}$$

3. These two definitions lead to identical expectation values:

$$\begin{aligned} \langle\phi_H(t)|\hat{O}_H(t)|\phi_H(t)\rangle &= \langle\phi_H(t)|\hat{U}_S^\dagger(t, t_0)\hat{O}_S(t)\hat{U}_S(t, t_0)|\phi_H(t)\rangle \\ &= \langle\hat{U}_S^\dagger(t, t_0)\phi_S(t)|\hat{U}_S^\dagger(t, t_0)\hat{O}_S(t)\hat{U}_S(t, t_0)|\hat{U}_S^\dagger(t, t_0)\phi_S(t)\rangle \\ &= \langle\hat{U}_S(t, t_0)\hat{U}_S^\dagger(t, t_0)\phi_S(t)|\hat{O}_S(t)|\hat{U}_S(t, t_0)\hat{U}_S^\dagger(t, t_0)\phi_S(t)\rangle \\ &= \langle\phi_S(t)|\hat{O}_S(t)|\phi_S(t)\rangle. \end{aligned}$$

In other words, both representations lead to the same physics and we are free to pick which ever one makes our calculations easiest.

The interaction representation is a kind of "blend" of these two points of view. We start with a problem described by a Hamiltonian of the form:

$$\hat{H}(t) = \hat{H}_0 + \hat{V}(t).$$

We will treat the time dependence due to the perturbation \hat{V} as evolving the states (Schrodinger-style) and the time dependence due to \hat{H}_0 as evolving the observables (Heisenberg-style).

Let us start by defining the evolution of states and operators in the interaction picture as:

$$\begin{cases} \hat{O}_I(t) = e^{i\hat{H}_0(t-t_0)}\hat{O}_S(t)e^{-i\hat{H}_0(t-t_0)}, \\ |\phi_I(t)\rangle = e^{i\hat{H}_0(t-t_0)}|\phi_S(t)\rangle = e^{i\hat{H}_0(t-t_0)}\hat{U}_S(t, t_0)|\phi_S(t_0)\rangle. \end{cases} \quad (7.17)$$

It is straightforward to check that this is consistent with the Schrodinger picture as:

$$\begin{aligned} \langle\phi_I(t)|\hat{O}_I(t)|\phi_I(t)\rangle &= \langle\phi_S(t)|e^{-i\hat{H}_0(t-t_0)}e^{i\hat{H}_0(t-t_0)}\hat{O}_S(t)e^{-i\hat{H}_0(t-t_0)}e^{i\hat{H}_0(t-t_0)}|\phi_S(t)\rangle \\ &= \langle\phi_S(t)|\hat{O}_S(t)|\phi_S(t)\rangle. \end{aligned} \quad (7.18)$$

If this seems a little arbitrary and pointless currently, don't worry, it will hopefully become clearer in a bit while it is useful. But before we get there let's keep going with seeing how this representation works.

We can implicitly define the interaction evolution operator $\hat{U}_I(t, t_0)$ as:

$$|\phi_I(t)\rangle = \hat{U}_I(t, t_0)|\phi_I(t_0)\rangle$$

Figure 7.2: I had no idea what is meant to be going on in this meme when I first saw it and just thought it would just make this page a little more colourful. Then someone sent me this link and I realised it was a half-decent explanation of the interaction picture. Credit: L'heure est grave.

This, combined with the second equation in (7.17), gives us an explicit expression for $\hat{U}_I(t, t_0)$:

$$\hat{U}_I(t, t_0) = e^{i\hat{H}_0(t-t_0)} \hat{U}_S(t, t_0). \quad (7.19)$$

Let's now have a look at how such an operator evolves. Differentiating it gives:

$$\begin{aligned} \frac{\partial}{\partial t} \hat{U}_I(t, t_0) &= e^{i\hat{H}_0(t-t_0)} i\hat{H}_0 \hat{U}_S(t, t_0) - ie^{i\hat{H}_0(t-t_0)} \hat{H}(t) \hat{U}_S(t, t_0) \\ &= -ie^{i\hat{H}_0(t-t_0)} (\hat{H}(t) - \hat{H}_0) \hat{U}_S(t, t_0) \\ &= -ie^{i\hat{H}_0(t-t_0)} \hat{V}(t) \hat{U}_S(t, t_0) \\ &= -ie^{i\hat{H}_0(t-t_0)} \hat{V}(t) e^{-i\hat{H}_0(t-t_0)} e^{i\hat{H}_0(t-t_0)} \hat{U}_S(t, t_0) \\ &= -i\hat{V}_I(t) \hat{U}_I(t, t_0). \end{aligned}$$

where in the final line we use the definition of an operator in the interaction picture from Eq.(7.17). Thus we have that the analogue of the Schrodinger equation for the evolution operator in the interaction picture is given by:

$$i \frac{\partial}{\partial t} \hat{U}_I(t, t_0) = \hat{V}_I(t) \hat{U}_I(t, t_0). \quad (7.20)$$

The key thing to notice is that in the equation that governs the evolution of the evolution operator in the interaction picture, i.e., Eq. (7.20), it is the perturbation that plays the role of the Hamiltonian! That is, we have simplified the differential equation we need to solve to find the propagator by hiding \hat{H}_0 . If we push the analogy a bit further, we can use similar reasoning as we used to find the propagator in the Schrodinger picture, to obtain an expansion of $\hat{U}_I(t, t_0)$:

$$\begin{aligned} \hat{U}_I(t, t_0) &= \mathbb{1} + \sum_{i=1}^{\infty} (-i)^n \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \dots \int_{t_0}^t dt_n (\hat{V}_I(t_1) \dots \hat{V}_I(t_{n-1})) \\ &= \mathbb{1} + \sum_{i=1}^{\infty} (-i)^n \frac{1}{n!} \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \dots \int_{t_0}^t dt_n \hat{T}(\hat{V}_I(t_1) \dots \hat{V}_I(t_{n-1})), \end{aligned} \quad (7.21)$$

which, similarly to before, we can also put in a more condensed version:

$$\hat{U}_I(t, t_0) = \hat{T} \left(e^{-i \int_{t_0}^t dt' \hat{V}_I(t')} \right).$$

As mentioned earlier, such an expansion is only meaningful if it is possible to truncate the sum from a certain term onwards. This is feasible when $\hat{V}(t)$ is a small perturbation.

7.3 Transition Probabilities

Consider a system described by a Hamiltonian of the form

$$\hat{H}(t) = \hat{H}_0 + \hat{V}(t) \quad (7.22)$$

where

$$\hat{V} = \begin{cases} 0 & \text{if } t \leq t_0 \\ \hat{V}(t) & \text{if } t > t_0. \end{cases} \quad (7.23)$$

We will use $|n\rangle$ and E_n to denote the states and eigenvalues of the unperturbed Hamiltonian. Suppose the system is in the eigenstate $|i\rangle$ at $t = t_0$, so its temporal evolution is determined by:

$$|\phi_S(t)\rangle = U_S(t, t_0) |i\rangle = \sum_{n=0}^{\infty} c_n(t) |n\rangle,$$

where $\sum_{n=0}^{\infty} |c_n|^2 = 1$. Since the states $|n\rangle$ are orthonormal, projecting the state $|\phi_S\rangle$ onto the state $|n\rangle$ determines the coefficient c_n , and this holds for any $n \in \mathbb{N}$:

$$\begin{aligned} c_n(t) &= \langle n | \phi_S(t) \rangle = \langle n | \hat{U}_S(t, t_0) | i \rangle \\ &= \langle n | e^{-i \hat{H}_0(t-t_0)} \hat{U}_I(t, t_0) | i \rangle \\ &= e^{-i \frac{E_n(t-t_0)}{\hbar}} \langle n | \hat{U}_I(t, t_0) | i \rangle. \end{aligned}$$

The amplitude $c_n(t)$ is simply the amplitude to find the system in eigenstate $|n\rangle$ given that it started in state $|i\rangle$. Thus the transition probability $P_{i \rightarrow n}$ from the initial state $|i\rangle$ to any eigenstate $|n\rangle$ of \hat{H}_0 is simply the mod-square of this:

$$P_{i \rightarrow n} = |\langle n | \phi_S(t) \rangle|^2 = |c_n(t)|^2 = |\langle n | \hat{U}_I(t, t_0) | i \rangle|^2.$$

Note that by assumption $\hat{V}(t) = 0$ for all $t \leq t_0$, so $|i\rangle$ is not only an eigenstate of \hat{H}_0 but also of \hat{H} for $t \leq t_0$. Let's determine the expression of the transition probability at the first order in \hat{V} . Note that (from Eq. (7.21)) in the first order in V the propagator is of the form:

$$\hat{U}_I(t, t_0) = \mathbb{1} - i \int_{t_0}^t dt_1 \hat{V}_I(t_1),$$

and so (assuming $n \neq i$) we have

$$\begin{aligned} \langle n | \hat{U}_I(t, t_0) | i \rangle &= -i \int_0^t dt_1 \langle n | \hat{V}_I(t_1, t_0) | i \rangle \\ &= -i \int_{t_0}^t dt_1 \langle n | e^{i \hat{H}_0(t_1-t_0)} \hat{V}(t_1, t_0) e^{-i \hat{H}_0(t_1-t_0)} | i \rangle \\ &= -i \int_{t_0}^t dt_1 e^{-i(E_n - E_i)(t_1-t_0)} \langle n | \hat{V}(t_1, t_0) | i \rangle, \end{aligned}$$

and finally

$$P_{i \rightarrow n} = \left| -i \int_{t_0}^t dt_1 e^{-i(E_n - E_i)(t_1 - t_0)} \langle n | \hat{V}(t_1, t_0) | i \rangle \right|^2. \quad (7.24)$$

This is the first-order time-dependent perturbation theory expression for the computation of a transition probability. Let's now evaluate it for some common cases of interest.

Turning on a constant perturbation. Let's consider the special case where the potential (once turned on) does not depend on time. That is, let's suppose that

$$\hat{V} = \begin{cases} 0 & \text{if } t \leq t_0 \\ \hat{V} & \text{if } t > t_0, \end{cases}$$

and 7.24 becomes:

$$\begin{aligned} P_{i \rightarrow n}(t) &= \left| \langle n | \hat{V} | i \rangle \int_{t_0}^t dt_1 e^{-i(E_n - E_i)(t_1 - t_0)} \right|^2 \\ &= \left| \frac{1}{i} \langle n | \hat{V} | i \rangle \frac{e^{-i(E_n - E_i)(t - t_0)} - 1}{E_n - E_i} \right|^2 \\ &= \left| \langle n | \hat{V} | i \rangle \right|^2 \frac{4}{(E_n - E_i)^2} \sin^2 \left(\frac{(E_n - E_i)(t - t_0)}{2} \right). \end{aligned}$$

Without loss of generality we can take $t_0 = 0$ and rewrite our expression for $P_{i \rightarrow n}(t)$ as

$$P_{i \rightarrow n}(t) = \left| \langle n | \hat{V} | i \rangle \right|^2 f(E_n - E_i), \quad (7.25)$$

with $f(\omega) = \frac{4}{\omega^2} \sin^2 \left(\frac{\omega t}{2} \right)$ and $\omega = E_n - E_i$. The function $f(\omega)$ is sketched in Fig. 7.3. Note that:

$$f(\omega) = \begin{cases} 0 & \text{for } \frac{\omega t}{2} = k\pi \\ \frac{4}{\omega^2} & \text{if } \frac{\omega t}{2} = \frac{\pi}{2} + k\pi, \end{cases}$$

where k is an integer. Thus we see that at a fixed time t , the probability of transitioning to a state $|n\rangle$ will be highest for those such that $\omega = E_n - E_i$ satisfies $\omega \leq \frac{2\pi}{t}$.

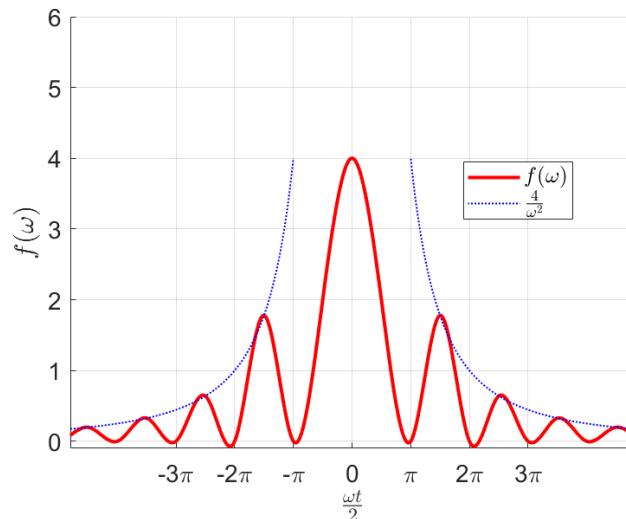


Figure 7.3: This is a plot of $f(\omega)$ where the horizontal axis is given in units of $\omega t/2$.

We now do something which is standard in physics textbook derivations but would make a mathematician cry ² and say

$$\lim_{t \rightarrow \infty} \frac{\sin^2(xt)}{x^2} = \pi t \delta(x). \quad (7.26)$$

The way to understand this statement is to say that in the limit of large t we have that

$$\frac{\sin^2(xt)}{x^2} \approx \pi t \delta(x). \quad (7.27)$$

That is, the leading contribution in the limit of large t scales as πt if $x = 0$ but otherwise is approximately 0.

We thus obtain the *Fermi golden rule*:

$$\lim_{t \rightarrow \infty} P_{i \rightarrow n}(t) = 4 |\langle n | \hat{V} | i \rangle|^2 \lim_{t \rightarrow \infty} \frac{1}{\omega^2} \sin^2\left(\frac{\omega t}{2}\right) = 2\pi t |\langle n | \hat{V} | i \rangle|^2 \delta(E_n - E_i) \quad (7.28)$$

where the final line we use $\omega = E_n - E_i$.

It is sometimes more useful to work with a *transition probability per unit time*, in this case we have

$$\frac{\partial P_{i \rightarrow n}(t)}{\partial t} = 2\pi |\langle n | \hat{V} | i \rangle|^2 \delta(E_n - E_i). \quad (7.29)$$

Oscillatory potential. Let's suppose now that the potential is given by

$$\hat{V} = \begin{cases} 0 & \text{if } t \leq t_0 \\ \hat{V}(t) e^{i\omega t} + \hat{V}^\dagger e^{-i\omega t} & \text{if } t > t_0. \end{cases} \quad (7.30)$$

From Eq.(7.24), the equation for the transition probability is now given by:

$$\begin{aligned} P_{i \rightarrow n} &= \left| -i \int_0^t dt_1 e^{i(E_n - E_i)t_1} (\langle n | \hat{V} | i \rangle e^{i\omega t_1} + \langle n | \hat{V}^\dagger | i \rangle e^{-i\omega t_1}) \right|^2 \\ &= \left| \frac{1 - e^{-i((E_n - E_i) + \omega)t}}{E_n - E_i + \omega} \langle n | \hat{V} | i \rangle + \frac{1 - e^{-i((E_n - E_i) - \omega)t}}{E_n - E_i - \omega} \langle n | \hat{V}^\dagger | i \rangle \right|^2. \end{aligned}$$

At long times, transitions to energy states with $E_n = E_i \pm \omega$ are favoured, and (via a similar analysis to above) we find:

$$\omega_{i \rightarrow n}(t) = 2\pi |\langle n | \hat{V} | i \rangle|^2 \delta(E_n - E_i + \omega) + 2\pi |\langle n | \hat{V}^\dagger | i \rangle|^2 \delta(E_n - E_i - \omega).$$

Notice that the first term in the sum corresponds to an energy loss by the system, while the second term represents an energy gain by the system. This variant of Fermi's golden rule is very important, as it explains how optical transitions occur in the presence of an oscillating external electromagnetic field, for instance, between levels of an atom or a solid due to application of laser light.

²I'm honestly all for 'physicist maths' normally but this one is a stretch even by my standards. If I find time I'll try and dig out a reference to a better derivation and/or write up one myself. If you come across one you like in the meantime feel free to email me. The discussion here might also make you feel a bit better.

Nearly constant perturbation. Let's now consider the case of a nearly constant perturbation

$$\hat{V}(t) = \hat{V}e^{\epsilon t}$$

where ϵ is real and positive. Instead of turning on the perturbation at time t_0 , we here assume that it turns on very slowly from $t = -\infty$. We will take the limit $\epsilon \rightarrow 0$ at the end of the calculation to describe a constant perturbation.

Let's write the perturbative expansion of $\hat{U}_I(t, -\infty)$. For the sake of simplicity, which will become clear later, we will use the first form for the propagator obtained before the introduction of the time-ordered operator (i.e. Eq. (7.6) but with $\hat{H} \rightarrow \hat{V}_I$):

$$\hat{U}_I(t, -\infty) = \hat{I} - i \int_{-\infty}^t dt_1 \hat{V}_I(t_1) - \int_{-\infty}^t dt_1 \int_{-\infty}^{t_1} dt_2 \hat{V}_I(t_1) \hat{V}_I(t_2) + \dots \quad (7.31)$$

Let's now look at the transition amplitude:

$$c_n(t) = e^{-iE_n t} \langle n | \hat{U}_I(t, t_0) | i \rangle \quad (7.32)$$

where we have omitted the constant phase $e^{iE_n t_0}$. Combining the previous two equations and now keeping terms to *second order* in \hat{V}_I gives:

$$e^{iE_n t} c_n(t) = -i \underbrace{\int_{-\infty}^t dt_1 \langle n | \hat{V}_I(t_1) | i \rangle}_{I_1} - \underbrace{\int_{-\infty}^t dt_1 \int_{-\infty}^{t_1} dt_2 \langle n | \hat{V}_I(t_1) \hat{V}_I(t_2) | i \rangle}_{I_2}$$

Let's start with the first integral. The calculation here proceeds in the same manner as for a constant and oscillatory perturbations. First we recall that

$$\begin{aligned} \hat{V}_I(t) &= e^{i\hat{H}_0 t} \hat{V}(t) e^{-i\hat{H}_0 t} \\ &= e^{i\hat{H}_0 t} \hat{V} e^{\epsilon t} e^{-i\hat{H}_0 t} \end{aligned}$$

Using the properties of the eigenstate we then have:

$$\begin{aligned} I_1 &= \int_{-\infty}^t dt_1 \langle n | \hat{V}_I(t_1) | i \rangle = \langle n | \hat{V} | i \rangle \int_{-\infty}^t dt_1 e^{i[(E_n - E_i)t_1 - i\epsilon t_1]} \\ &= \langle n | \hat{V} | i \rangle \left. \frac{\exp(i((E_n - E_i)t_1 - i\epsilon t_1))}{i(E_n - E_i - i\epsilon)} \right|_{-\infty}^t \end{aligned}$$

If we were to stop at the first order, we would find the golden rule as follows:

$$P_{i \rightarrow n} = |c_n(t)|^2 = |\langle n | \hat{V} | i \rangle|^2 \frac{e^{2\epsilon t}}{(E_n - E_i)^2 + \epsilon^2}$$

and so

$$\omega_{i \rightarrow n} = \frac{dP_{i \rightarrow n}}{dt} = |\langle n | \hat{V} | i \rangle|^2 \frac{2\epsilon e^{2\epsilon t}}{(E_n - E_i)^2 + \epsilon^2} \quad (7.33)$$

Let's check that our result here agrees with that obtained for the constant perturbation in the limit that $\epsilon \rightarrow 0$. To do so we first note that

$$\lim_{\epsilon \rightarrow 0} \frac{2\epsilon e^{2\epsilon t}}{x^2 + \epsilon^2} = 2\pi\delta(x)$$

and thus

$$\lim_{\epsilon \rightarrow 0} \frac{dP_{i \rightarrow n}}{dt} = 2\pi |\langle n | \hat{V} | i \rangle|^2 \delta(E_n - E_i). \quad (7.34)$$

That is, we find we do indeed regain the previous result in Eq. (7.29).

But what about to second order? Let's now calculate I_2 :

$$I_2 = \int_{-\infty}^t dt_1 \int_{-\infty}^{t_1} dt_2 \sum_m \langle n | \hat{V}_I(t_1) | m \rangle \langle m | \hat{V}_I(t_2) | i \rangle$$

where we have introduced \hat{I} as $\sum_m |m\rangle\langle m|$

$$\begin{aligned} I_2 &= \sum_m \langle n | \hat{V} | m \rangle \langle m | \hat{V} | i \rangle \int_{-\infty}^t dt_1 \int_{-\infty}^{t_1} dt_2 \exp(i(E_n - E_m - i\epsilon)t_1) \exp(i(E_m - E_i - i\epsilon)t_2) \\ &= \sum_m \langle n | \hat{V} | m \rangle \langle m | \hat{V} | i \rangle \int_{-\infty}^t dt_1 \exp(i(E_n - E_m - i\epsilon)t_1) \frac{\exp(i(E_m - E_i - i\epsilon)t_2)}{i(E_m - E_i - i\epsilon)} \Big|_{-\infty}^{t_1} \\ &= \sum_m \langle n | \hat{V} | m \rangle \langle m | \hat{V} | i \rangle \int_{-\infty}^t dt_1 \exp(i(E_n - E_m - i\epsilon)t_1) \frac{\exp(i(E_m - E_i - i\epsilon)t_1)}{i(E_m - E_i - i\epsilon)} \\ &= - \sum_m \frac{\langle n | \hat{V} | m \rangle \langle m | \hat{V} | i \rangle \exp(i(E_n - E_i - 2i\epsilon)t)}{(E_m - E_i - i\epsilon)(E_n - E_i - 2i\epsilon)} \end{aligned}$$

The term $\exp(i(E_n - E_i - 2i\epsilon)t)/(E_n - E_i - 2i\epsilon)$ is the same as in I_1 (except for $\epsilon \rightarrow 2\epsilon$, which doesn't change anything in the limit $\epsilon \rightarrow 0$). If we start from

$$\exp(iE_n t) c_n(t) = \hat{I} - i \int_{-\infty}^t dt_1 \hat{V}_I(t_1) - i \int_{-\infty}^t dt_1 \int_{-\infty}^{t_1} dt_2 \hat{V}_I(t_1) \hat{V}_I(t_2)$$

and replace the two previous results, we have

$$\begin{aligned} P_{i \rightarrow n} &= |c_t(t)|^2 = \left| i \int_{-\infty}^t dt_1 \hat{V}_I(t_1) + 1 \int_{-\infty}^t dt_1 \int_{-\infty}^{t_1} \hat{V}_I(t_1) \hat{V}_I(t_2) \right|^2 \\ &= \left| \langle n | \hat{V} | i \rangle + \sum_m \frac{\langle n | \hat{V} | m \rangle \langle m | \hat{V} | i \rangle}{E_m - E_i - i\epsilon} \right|^2 \frac{e^{2\epsilon t}}{(E_n - E_i)^2 + \epsilon^2} \end{aligned}$$

and

$$\lim_{\epsilon \rightarrow 0} \frac{dP_{i \rightarrow n}}{dt} = \omega_{i \rightarrow n} = 2\pi \left| \langle n | \hat{V} | i \rangle + \sum_m \frac{\langle n | \hat{V} | m \rangle \langle m | \hat{V} | i \rangle}{E_m - E_i - i0^+} \right|^2 \delta(E_n - E_i)$$

which is the second-order transition rate for a time-independent perturbation \hat{V} . Note the sum over intermediate states $|m\rangle$ typical of second-order perturbation. Here, a very suggestive image is that the system undergoes "virtual" transitions to states $|m\rangle$ without conserving energy since they occur in an arbitrarily short time before going to state $|n\rangle$.

Chapter 8

Variational Principle

8.1 General Idea:

Consider a physical system described by a Hamiltonian \hat{H} . Let's write H in terms of its eigen-decomposition $H = \sum_i E_i |\phi_i\rangle\langle\phi_i|$ where we suppose that the energy levels are labelled in increasing order with $E_i \leq E_{i+1}$ with E_0 the ground state energy. It follows that for any state $|\psi\rangle$, the average energy of that state $\langle\psi|H|\psi\rangle$, will always be greater than or equal to the ground state energy E_0 . This rather obvious¹ statement is given the name of the *variational principle*:

$$\langle\psi|H|\psi\rangle \geq E_0.$$

This inequality becomes an quality (again obviously) if and only if $|\psi\rangle = |\phi_0\rangle$, and ϕ_0 is non-degenerate. I think this statement hardly needs proving but in case its helpful here is that proof in the discrete case (and the continuous case easily follows by using properties of the integral):

$$\begin{aligned}\langle\psi|\hat{H}|\psi\rangle &= \sum_{n=0}^{\infty} E_n |\langle\psi|\phi_n\rangle|^2 \\ &\geq E_0 \sum_{n=0}^{\infty} |\langle\psi|\phi_n\rangle|^2 \\ &= E_0 \sum_{n=0}^{\infty} \langle\psi|\phi_n\rangle\langle\phi_n|\psi\rangle \\ &= E_0\end{aligned}$$

Note that I have provided the statement above assuming, as is standard, that the state $|\psi\rangle$ is normalised. However, the variational principle is often stated more generally for the case of a (potentially) non-normalized state. In this case you first need to normalize by hand such that $|\psi\rangle$ becomes $\frac{1}{\sqrt{\langle\psi|\psi\rangle}}|\psi\rangle$ and so the variational principle becomes:

$$\frac{\langle\psi|H|\psi\rangle}{\langle\psi|\psi\rangle} \geq E_0. \quad (8.1)$$

We can use the variational principle to find an approximation of the ground state of H . The idea is to come up with a parameterised guess for the state $|\psi\rangle$, and then we use the variational

¹I generally try and avoid calling things 'trivial' or 'obvious' but I really do think this statement is. And recognising so is actually helpful. Of course the lowest energy a state can have is the ground state energy! As a result I've always found naming this claim as the 'variational principle' at best a bit grandiose and at worst slightly confusing.

Figure 8.1:

principle to find the parameter values that minimize ψ . This method generalizes to excited states. For any $|\psi\rangle \in \mathcal{H}$ such that $\langle \phi_0 | \psi \rangle = 0$, the following inequality² is always satisfied:

$$\frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \geq E_1.$$

The proof of this fact is identical to the proof of the variational principle for the ground state since the term involving $|\phi_0\rangle$ drops out by the choice of $|\psi\rangle$.

Ok, so the basic idea of the variational principle is pretty simple (I promise!). Let's now look at how it is applied in practise. Again, I hope you'll agree that the basic idea of how to apply it is straightforward enough. That said, as we'll see, actually doing the full calculation can lead to some annoying integrals.

Example 8.1.1 (One-Dimensional Harmonic Oscillator). The system's Hamiltonian is given by:

$$\hat{H} = \underbrace{-\frac{\hbar^2}{2m} \frac{d^2}{dx^2}}_{=\hat{T}} + \underbrace{\frac{1}{2} m \omega^2 x^2}_{=\hat{V}}. \quad (8.2)$$

We introduce a (non-normalized) trial function:

$$\psi_a(x) = \frac{1}{x^2 + a} \quad (8.3)$$

with $a > 0$. Note that this choice is physically unrealistic because the wavefunction should decrease exponentially as x goes to infinity. Our goal is to compute the energy of H in the state

²We're assuming here that the ground state is non-degenerate. If it's degenerate you need the constraint that $|\psi\rangle$ has zero overlap onto the space spanned by the ground states.

$|\psi\rangle$ and then find the a that minimizes this energy. To do so, we need to compute:

$$\begin{aligned}\langle\psi|\hat{T}|\psi\rangle &= -\frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \frac{1}{x^2+a} \frac{d^2}{dx^2} \frac{1}{x^2+a} \\ \langle\psi|\hat{V}|\psi\rangle &= \frac{1}{2}m\omega^2 \int_{-\infty}^{\infty} dx \frac{x^2}{(x^2+a)^2} \\ \langle\psi|\psi\rangle &= \int_{-\infty}^{\infty} dx \frac{1}{(x^2+a)^2}.\end{aligned}\tag{8.4}$$

This will allow us to compute the average energy of our guess as a function of x as

$$E(x) := \frac{\langle\psi|\hat{H}|\psi\rangle}{\langle\psi|\psi\rangle} = \frac{\langle\psi|\hat{T}|\psi\rangle}{\langle\psi|\psi\rangle} + \frac{\langle\psi|\hat{V}|\psi\rangle}{\langle\psi|\psi\rangle}.\tag{8.5}$$

And then all we need to do is find the minimum of the function $E(x)$, and this will be our guess of the ground state energy.

Computing the integrals is the hard part. I'll leave that fun to you and just state the results here³.

$$\langle\psi|\psi\rangle = \int_{-\infty}^{\infty} \frac{1}{(x^2+a)^2} dx = \frac{\pi}{2a^{3/2}}\tag{8.6}$$

$$\begin{aligned}\langle\psi|\hat{H}|\psi\rangle &= \int_{-\infty}^{\infty} \frac{1}{x^2+a} \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}m\omega^2 x^2 \right) \frac{1}{x^2+a} dx \\ &= -\frac{\hbar^2}{2m} \int_{-\infty}^{\infty} \frac{6x^2-2a}{(x^2+a)^4} dx + \frac{1}{2}m\omega^2 \int_{-\infty}^{\infty} \frac{x^2}{(x^2+a)^2} dx \\ &= \frac{\pi}{2a^{3/2}} \left(\frac{\hbar^2}{4ma} + \frac{1}{2}m\omega^2 a \right).\end{aligned}\tag{8.7}$$

The energy corresponding to a state $|\psi_a\rangle$ is therefore given by

$$E(a) = \frac{\langle\psi_a|\hat{H}|\psi_a\rangle}{\langle\psi_a|\psi_a\rangle} = \frac{\hbar^2}{4m} \frac{1}{a} + \frac{1}{2}m\omega^2 a,$$

and we seek a such that the energy is minimal:

$$\frac{dE(a)}{da} = -\frac{\hbar^2}{4ma^2} + \frac{1}{2}m\omega^2 = 0 \implies \frac{1}{2}m\omega^2 a^2 = \frac{\hbar^2}{4m} \implies a = \frac{\hbar}{m\omega\sqrt{2}}.$$

Our approximation of the energy of the ground state is therefore given by

$$E\left(\frac{\hbar}{m\omega\sqrt{2}}\right) = \frac{\hbar\omega}{\sqrt{2}} \simeq 0.72\hbar\omega\tag{8.8}$$

This approximation is considerably higher than the exact (known in the case of the harmonic oscillator) ground state energy: $0.72\hbar\omega > 0.5\hbar\omega$.

³Don't worry, in the exam I'll give you enough hints for you to be able to figure it out without being an integration wizard. If you want some hints for this one, go check out Vincenzo's notes.

Example 8.1.2 (One-Dimensional Harmonic Oscillator:). We could now similarly determine the first excited state of the one-dimensional harmonic oscillator. The Hamiltonian is still given by Eq. 8.2. Let's set ⁴ $\psi_a(x) \frac{x}{(x^2+a)^2}$ with $a > 0$. This function is odd under the inversion $x \rightarrow -x$. Therefore, it will be orthogonal to the ground state $\psi_0(x)$, which is even.

For the computation, we will need the following integrals:

$$\begin{aligned} I_4 &= \int_{-\infty}^{\infty} dx \frac{1}{(x^2+a)^4} = \frac{5\pi}{16} a^{-7/2} & I_5 &= \frac{35\pi}{128} a^{-9/2} \\ J_4 &= \int_{-\infty}^{\infty} \frac{x^2}{(x^2+a)^4} = \frac{\pi}{16} a^{-5/2} & I_6 &= \frac{63\pi}{256} a^{-11/2} \\ k_4 &= \int_{-\infty}^{\infty} dx \frac{x^4}{(x^2+a)^4} = \frac{\pi}{16} a^{-3/2} \end{aligned}$$

It follows that we can compute the kinetic energy term as:

$$\begin{aligned} \langle \phi_a | \hat{T} | \phi_a \rangle &= -\frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \frac{x^2}{(x^2+a)^2} \frac{d^2}{dx^2} \frac{x^2}{(x^2+a)^2} = \dots \\ &= \frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \left(\frac{d}{dx} \frac{x}{(x^2+a)^2} \right)^2 \\ &= \frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \left(-\frac{1}{(x^2+a)^2} - \frac{4x^2}{(x^2+a)^3} \right)^2 \\ &= \frac{\hbar^2}{2m} \int_{-\infty}^{\infty} dx \left(-\frac{3}{(x^2+a)^2} + \frac{4a}{(x^2+a)^3} \right)^2 \\ &= \frac{\hbar^2}{2m} (9I_4 - 24aI_5 + 16a^2I_6) \\ &= \frac{\hbar^2}{2m} \left(\frac{45\pi}{16} - \frac{105\pi}{16} + \frac{63\pi}{16} \right) a^{-7/2} \\ &= \frac{3}{16} \pi \frac{\hbar^2}{2m} a^{-7/2} \end{aligned}$$

And the potential energy term is given by:

$$\begin{aligned} \langle \phi_a | \hat{V} | \phi_a \rangle &= \frac{1}{2} m \omega^2 \int_{-\infty}^{\infty} dx \frac{x^4}{(x^2+a)^4} \\ &= \frac{1}{2} m \omega^2 k_4 \\ &= \frac{\pi}{32} m \omega^2 a^{-3/2} \end{aligned}$$

Finally, the norm is given by:

$$\langle \phi_a | \phi_a \rangle = \int_{-\infty}^{\infty} dx \frac{x^2}{(x^2+a)^2} = J_4 = \frac{\pi}{16} a^{-5/2}$$

⁴Note we chose to divide by $(x^2+a)^2$ rather than (x^2+a^2) . This is because if we picked $x/(x^2+a^2)$ then even those the function is square-integrable the potential term would eventually diverge.

Thus putting this mess together we have

$$E(a) = \frac{1}{2} \left(\frac{3\hbar^2}{m} a^{-7/2} + m\omega^2 a^{-3/2} \right) \cdot \left(a^{-5/2} \right)^{-1} = 3 \frac{\hbar^2}{2m} \frac{1}{a} + \frac{1}{2} m\omega^2 a \quad (8.9)$$

To find our approximation of the energy of the first excited state we just minimize this:

$$\begin{aligned} \frac{dE(a)}{da} &= -3 \frac{\hbar^2}{2m} \frac{1}{a^2} + \frac{1}{2} m\omega^2 \\ \frac{dE(a)}{da} &\Rightarrow \frac{3\hbar^2}{2m} \frac{1}{a^2} = \frac{1}{2} m\omega^2 \\ \Rightarrow a^2 &= \frac{3\hbar^2}{m^2\omega^2} \\ a &= \sqrt{3} \frac{\hbar}{m\omega} \\ E_1(a) &= \frac{3\hbar^2}{2m} \frac{m\omega}{\hbar\sqrt{3}} + \frac{\sqrt{3}}{2} \hbar\omega \end{aligned} \quad (8.10)$$

Thus we approximate the energy of the first excited state as:

$$E_1(a) = \sqrt{3}\hbar\omega \approx 1.732\hbar\omega,$$

which is larger than, but not too far off, the known of the energy of the first excited state of the oscillator of $E_1^{\text{eff}} = 1.5\hbar\omega$.

More generally, if one cannot use a symmetry argument, one can always seek a state $|\phi\rangle$ that minimizes the energy expectation value, $E = \langle\phi|\hat{H}|\phi\rangle / \langle\phi|\phi\rangle$ with the constraint $\langle\phi|\psi\rangle = 0$, where $|\psi\rangle$ is the variational solution found for the ground state. If $|\psi\rangle$ is a good approximation, then its component orthogonal to $|0\rangle$ will be minimal. In this case, there is a high probability that the variational solution $|\phi\rangle$ will be almost orthogonal to $|0\rangle$ and will also provide a relatively good approximation to $|1\rangle$.

Note 8.1.3. Note that the variational approach makes error calculations extremely complicated (we can't do it unless we have a better approximation - but then we would just use that in the first place!) Furthermore, for any arbitrary wave function ψ , minimizing the error actually leads to restoring the Schrödinger equation.

8.2 The variational Principle for an arbitrary ansatz

These final two sections are non-examinable. I include them in case you are interested.

We can try to find the exact solution to the problem using the variational approach. Consider a Hamiltonian \hat{H} and an arbitrary state $\psi(x)$. The energy expectation value is given by

$$E[\psi, \psi^*] = \langle \psi | \hat{H} | \psi \rangle = \int dx \psi^* \hat{H} \psi$$

Since ψ is a complex-valued function, we consider E to be a function of ψ and ψ^* (i.e., of $\Re(\psi)$ and $\Im(\psi)$).

Introduce an infinitesimal variation $\delta\psi^*(x)$ of $\psi^*(x)$, with $\delta\psi^*(x) \rightarrow 0$. We are treating ψ and ψ^* as two independent variables, and thus

$$E[\psi, \psi^* + \delta\psi^*] = \int dx \psi^* \hat{H} \psi + \int dx \delta\psi^* \hat{H} \psi$$

and

$$\delta E = E[\psi, \psi^* + \delta\psi^*] - E[\psi, \psi^*] = \int dx \delta\psi^* \hat{H} \psi$$

It is necessary to introduce the concept of a functional derivative at this point. Alternatively, we can imagine a function ψ "discretized" on a grid x_j , $j = -\infty, \dots, 1, 2, \dots$. In this case, we can interpret this problem in a variational context with an infinite number of parameters $\delta\psi_j^* = \delta^*(x_j)$. This way, we recover the concept of a traditional derivative.

To minimize E , we need $\delta E = 0$. Now,

$$\delta E = \int dx \delta\psi^* \hat{H} \psi$$

In the discretized version,

$$\delta E = \sum_j \delta\psi_j^* \hat{H} \psi_j$$

and the (true) derivative of E with respect to ψ_j^* is

$$\frac{\partial E}{\partial \psi_j^*} = \hat{H} \psi_j$$

The minimization condition is then

$$\frac{\partial E}{\partial \psi_j^*} = \forall j \Rightarrow \hat{H} \psi_j = 0 \quad \forall j \Rightarrow \psi_j = 0$$

and similarly for ψ_j .

This strange result is because we forgot the norm constraint. We need $\langle \psi | \psi \rangle = 1$. And if we do not have this, we can always just set $\psi_j = 0$ to set the energy to 0.

To find a constrained minimum, we use the Lagrange multipliers. We want to minimize $\langle \psi | \hat{H} | \psi \rangle$ with the constraint $\langle \psi | \psi \rangle = 1$. We introduce the functional

$$E[\psi, \psi^*, \lambda] = \langle \psi | \hat{H} | \psi \rangle - \lambda(\langle \psi | \psi \rangle - 1) = \int dx \psi^* \hat{H} \psi - \lambda \left(\int dx \psi^* \psi - 1 \right)$$

As before:

$$\delta E = \int dx \delta\psi^* \hat{H} \psi - \lambda \int dx \delta\psi^* \psi$$

The condition $\delta E = 0$ for arbitrary variation $\delta\psi^*(x)$ implies equality of the integrands:

$$\hat{H}\psi = \lambda\psi$$

It's the Schrödinger equation! The variational principle, without additional conditions, should lead to the exact solution of the problem (but hasn't made the problem any easier).

Reminder 8.2.1. (Harmonic Oscillator⁵). We have

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$$

with $[\hat{x}, \hat{p}] = i\hbar$. Let's introduce

$$\begin{aligned}\hat{a} &\equiv \sqrt{\frac{m\omega}{2\hbar}}\hat{x} + i\frac{1}{\sqrt{2m\hbar\omega}}\hat{p} \\ \hat{a}^\dagger &\equiv \sqrt{\frac{m\omega}{2\hbar}}\hat{x} - i\frac{1}{\sqrt{2m\hbar\omega}}\hat{p} \\ \hat{x} &= \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}^\dagger + \hat{a}) \\ \hat{p} &= i\sqrt{\frac{m\hbar\omega}{2}}(\hat{a}^\dagger - \hat{a})\end{aligned}$$

We note

$$[\hat{a}, \hat{a}^\dagger] = \hat{a}\hat{a}^\dagger - \hat{a}^\dagger\hat{a} = 1$$

There is a ground state $|\phi_0\rangle$ such that

$$\hat{a}|\phi_0\rangle = 0$$

The spectrum is

$$\hat{H}|\phi_n\rangle = \hbar\omega\left(n + \frac{1}{2}\right)|\phi_n\rangle$$

The norms are

$$\begin{aligned}\hat{a}^\dagger|\phi_n\rangle &= \sqrt{n+1}|\phi_{n+1}\rangle \\ \hat{a}|\phi_n\rangle &= \sqrt{n}|\phi_{n-1}\rangle \\ |\phi_n\rangle &= \frac{(\hat{a}^\dagger)^n}{\sqrt{N!}}|\phi_0\rangle\end{aligned}$$

The $\{|\phi_n\rangle\}$ are non-degenerate, we thus have $\langle\phi_i|\phi_j\rangle = \delta_{ij}$.

Note 8.2.2.

$$\langle\phi_n|\hat{x}|\phi_n\rangle = \langle\phi_n|\hat{p}|\phi_n\rangle = 0$$

⁵Vincenzo Savona's notes, which I am working from here, have a couple of pages recapping the quantum harmonic oscillator at this point. It's not entirely clear to me why. So I will skip in the lecture. But Physicists love modelling things as a harmonic oscillator so it is good to have this stuff dialled so I'll add this here in the notes in case it is helpful for anyone.

and

$$\begin{aligned}\langle \phi_n | \hat{x}^2 | \phi_n \rangle &= \dots = \frac{\hbar}{2m\omega}(2n+1) \\ \langle \phi_n | \hat{p}^2 | \phi_n \rangle &= \dots = \frac{m\hbar\omega}{2}(2n+1)\end{aligned}$$

for $n = 0$ we have $\Delta\hat{x}\Delta\hat{p} = \frac{\hbar}{2}$

For a Harmonic oscillator in isotropic 3D, we have

$$\hat{H} = \frac{|\hat{\mathbf{p}}|^2}{2m} + \frac{1}{2}m\omega^2|\hat{\mathbf{r}}|^2$$

Note 8.2.3.

$$\begin{aligned}|\hat{\mathbf{p}}|^2 &= \hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 \\ |\hat{\mathbf{x}}|^2 &= \hat{x}^2 + \hat{y}^2 + \hat{z}^2\end{aligned}$$

thus

$$\begin{aligned}\hat{H} &= \hat{H}_x + \hat{H}_y + \hat{H}_z \\ \hat{H}_x &= \frac{\hat{p}_x^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2 \\ \hat{H}_y &= \frac{\hat{p}_y^2}{2m} + \frac{1}{2}m\omega^2\hat{y}^2 \\ \hat{H}_z &= \frac{\hat{p}_z^2}{2m} + \frac{1}{2}m\omega^2\hat{z}^2\end{aligned}$$

Separable hamiltonian:

$$\psi(x, y, z) = \psi_n(x)\phi_m(y)\xi_l(z)$$

where $\hat{H}_x\psi_n(x) = E_n\psi(x)$, with $E_n = \hbar\omega\left(n + \frac{1}{2}\right)$, similarly for \hat{y} and \hat{z} . Thus $\hat{H}\psi = E_{nml}\psi$, with $E_{nml} = \hbar\omega\left(n + m + l + \frac{3}{2}\right)$ Why is the harmonic oscillator so important?

1. Except for pathological cases, all systems admit a harmonic approximation.

Example 8.2.4. Central Potential. We have

$$V = -\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial r^2} + \frac{L^2}{2mr^2} - \frac{\alpha}{r}$$

One could start from the solution of the harmonic problem and calculate more accurate solutions using perturbation theory.

2. Quantum Field Theory for Multi-Body Systems. The state of a free particle with momentum $\hbar\mathbf{k}$ corresponding to one quantum of energy can be written as $|1\rangle$. Thus, two particles in the same state will have twice the energy, which can be understood as the state $|2\rangle$ of the harmonic oscillator, and so on. The states of N free particles are described as an infinite set of harmonic oscillators, one for each $\hbar\mathbf{k}$.

More formally, this result can be obtained from the consideration that the wave function $\psi(\mathbf{r})$ can be treated as a dynamic variable, and thus as an additional operator, denoted by $\hat{\psi}$ and $\hat{\psi}^\dagger$. This procedure is called second quantization.

8.3 Hartree-Fock Theory

Let's consider a system of N spinless Fermions. If you've forgotten the lecture of indistinguishable particles now might be a good moment to go back and revise it. But just to recap the basics, the state of such a system is anti-symmetric under exchange of any two particle indices. Thus we can write the general state as:

$$|\psi_{\mathbf{x}}\rangle = \frac{1}{\sqrt{N!}} \sum_{\mathbb{P} \in S_n} \text{sign}(\mathbb{P}) \mathbb{P} |x_1, x_2, \dots, x_N\rangle \quad (8.11)$$

where $\text{sign}(\mathbb{P}) = -1$ if \mathbb{P} involves an odd number of index swaps and $\text{sign}(\mathbb{P}) = 1$ if \mathbb{P} involves an even number of index swaps. We note that given the Pauli exclusion principle, no two Fermions can be in the same state (i.e. $n_k = 1$ for all k), so each state in the sum here is unique and so the normalization is simply $\frac{1}{\sqrt{N!}}$.

Now, it'll be convenient here to switch notation and write this in terms of the wavefunctions explicitly. That is, we will work within the Hilbert space \mathcal{H}_1 of single-particle states, where the set $\{\phi_{n_i}\}_{i=1}^N$ represents an orthonormal basis of single-particle wave functions. Under these considerations, any wave function for N particles ψ can be expressed as:

$$\psi(x_1, \dots, x_N) = \frac{1}{\sqrt{N!}} \sum_{\mathbb{P} \in S_n} \text{sign}(\mathbb{P}) \mathbb{P} \phi_{n_1}(x_1) \dots \phi_{n_N}(x_N) \quad (8.12)$$

Or, equivalently, we can recognise this expression as a determinant and can write:

$$\psi(x_1, \dots, x_N) = \frac{1}{N!} \begin{vmatrix} \phi_{n_1}(x_1) & \dots & \phi_{n_N}(x_N) \\ \vdots & & \vdots \\ \phi_{n_N}(x_1) & \dots & \phi_{n_N}(x_N) \end{vmatrix}. \quad (8.13)$$

We can now use our new found appreciation for the variational principle and can consider the ϕ_{n_i} as variational parameters. The Hartree-Fock approximation involves representing the ground state as a single Slater determinant, so we need to choose the ϕ_{n_i} that provide the best approximation.

The Hamiltonian of the system is given by $\hat{H} = \hat{T} + \hat{V}$, where

- The operator \hat{T} is the total kinetic energy of the system, which is the sum of the kinetic energies of the N particles:

$$\hat{T} = \sum_{j=1}^N \hat{t}_j = \sum_{j=1}^N -\frac{\hbar^2}{2m} \nabla_j^2$$

- The operator \hat{V} represents the potential energy of the N particles, given as the sum of potential energies of each pair of particles:

$$\hat{V} = \sum_{\substack{i,j \\ i \neq j}} \hat{V}_{i,j},$$

where $\hat{V}_{i,j} = \hat{V}(x_i, x_j)$.

We work within the Fock space. We have:

$$\langle \psi | \hat{T} | \psi \rangle = \sum_{j=1}^N \langle \phi_{n_j} | \hat{T} | \phi_{n_j} \rangle = \sum_{j=1}^N \int dx \phi_{n_j}^*(x) T(x) \phi_{n_j}(x), \quad (8.14)$$

and

$$\langle \psi | \hat{V} | \psi \rangle = \frac{1}{2} \sum_{i,j=1}^N (\langle \phi_{n_i} \phi_{n_j} | \hat{V} | \phi_{n_i} \phi_{n_j} \rangle - \langle \phi_{n_i} \phi_{n_j} | \hat{V} | \phi_{n_j} \phi_{n_i} \rangle) \quad (8.15)$$

$$= \frac{1}{2} \sum_{i,j=1}^N \int dx_1 dx_2 \left(\phi_{n_i}^*(x_1) \phi_{n_j}^*(x_2) \hat{V}(x_1, x_2) \phi_{n_i}(x_1) \phi_{n_j}(x_2) \right. \quad (8.16)$$

$$\left. - \phi_{n_j}^*(x_1) \phi_{n_i}^*(x_2) \hat{V}(x_1, x_2) \phi_{n_i}(x_1) \phi_{n_j}(x_2) \right). \quad (8.17)$$

You should recognise this type of expression from when we studied indistinguishable particles - first term in the expression for $\langle \psi | \hat{V} | \psi \rangle$ is called the "direct term," while the second is the "exchange term."

The goal is to minimize $\langle \psi | \hat{H} | \psi \rangle = \langle \psi | \hat{T} | \psi \rangle + \langle \psi | \hat{V} | \psi \rangle$ subject to the N^2 constraints: $\langle \phi_{n_i} | \phi_{n_j} \rangle = \delta_{i,j}$. We use Lagrange multipliers to solve the constrained minimization problem.

Theorem 8.3.1 (Constrained Extrema via Lagrange multipliers). *Seeking the extrema of a function $F(x, y)$ under a constraint $f(x, y) = 0$ is equivalent to searching for those of the function:*

$$H(x, y, \lambda) = F(x, y) - \lambda f(x, y).$$

Thus we are tasked with minimizing:

$$F = \langle \psi | \hat{H} | \psi \rangle - \sum_{i,j} \lambda_{i,j} (\langle \phi_{n_i} | \phi_{n_j} \rangle - \delta_{i,j}). \quad (8.18)$$

We have N^2 constraints of the form $\langle \phi_{n_i} | \phi_{n_j} \rangle = \delta_{i,j}$ so initially it might seem that we need to introduce N^2 Lagrange multipliers. However, with a little thought we can see that the constraints with respect to swapping i and j and so it follows that $\lambda_{i,j} = \lambda_{j,i}^*$ which halves the number of constraints we need to deal with.

We consider ϕ and ϕ^* as independent variables. As an example, the variations with respect to $\phi_{n_i}^*$ yield:

$$\delta \hat{T} = \sum_j \int dx \delta \phi_{n_j}^*(x) \hat{T} \phi_{n_j}(x).$$

Similarly, the variations in \hat{V} are:

$$\delta \hat{V} = \sum_{j \neq i} \int dx_1 \int dx_2 \left(\delta \phi_{n_i}^*(x_1) \phi_{n_j}^*(x_2) \hat{V} \phi_{n_i}(x_1) \phi_{n_j}(x_2) - \delta \phi_{n_i}^*(x_2) \phi_{n_j}^*(x_1) \hat{V} \phi_{n_i}(x_1) \phi_{n_j}(x_2) \right).$$

And the variations in the constraint term give:

$$\delta \sum_{i,j} \lambda_{i,j} (\langle \phi_{n_i} | \phi_{n_j} \rangle - 1) = \sum_{i,j} \lambda_{i,j} \int dx \delta \phi_i^*(x) \phi_j(x).$$

We want to minimize $F = \langle \psi | \hat{H} | \psi \rangle - \sum_{i,j} \lambda_{i,j} (\langle \phi_{n_i} | \phi_{n_j} \rangle - \delta_{i,j})$ with respect to ϕ_{n_i} . We, therefore, impose $\frac{\delta F}{\delta \phi_{n_i}^*} = 0$ for all i , which leads to the equation:

$$\hat{\phi}_{n_i}(x) + \sum_{j=1}^N \int dx_2 \left(\phi_{n_j}^*(x_2) \hat{V} \phi_{n_i}(x) \phi_{n_j}(x_2) - \phi_{n_j}^*(x) \hat{V} \phi_{n_i}(x) \phi_{n_j}(x_2) \right) = \sum_{j=1}^N \lambda_{i,j} \phi_{n_j}(x). \quad (8.19)$$

Without loss of generality we can chose to work in the basis in which the matrix λ is diagonal. That is, without loss of generality we can take $\lambda_{i,j} = \epsilon_i \delta_{i,j}$ and we end up with *the Hartree-Fock equation* :

$$-\frac{\hbar^2}{2m} \nabla^2 \phi_{n_i}(x) + \sum_{j=1}^N \int dx_2 \left(\phi_{n_j}^*(x_2) \hat{V} \phi_{n_i}(x) \phi_{n_j}(x_2) - \phi_{n_j}^*(x) \hat{V} \phi_{n_i}(x) \phi_{n_j}(x_2) \right) = \epsilon_i \phi_{n_i}(x). \quad (8.20)$$

Or, equivalently, we can write this more compactly as:

$$(T(x) + V_H(x) - V_E(x)) \phi_{n_i}(x) = \epsilon_i \phi_{n_i}(x) \quad (8.21)$$

where we have defined

$$\begin{aligned} T(x) &:= -\frac{\hbar^2}{2m} \nabla^2 \\ V_H(x) &:= \sum_{j=1}^N \int dx_2 \phi_{n_j}^*(x_2) \hat{V} \phi_{n_j}(x_2) \\ V_E(x) &:= \sum_{j=1}^N \int dx_2 \phi_{n_j}^*(x) \hat{V} \phi_{n_j}(x_2). \end{aligned} \quad (8.22)$$

Thus we see that we have decoupled the original eigenvalue problem defined on the N particle system into a set of N eigenvalue problems for each of the single particle states. This looks easier! The first term is the kinetic term, the second term is a potential energy term (which we will look at more closely in a second) and the third term is the ‘exchange term’ arising from the anti-symmetrization properties of the fermionic wave-function.

Ok, let us look more carefully at the $V_H(x)$ term (which corresponds to the direct integral term in the potential 8.17). Let’s suppose that the potential has the form:

$$\hat{V}(x_1, x_2) = \frac{e^2}{|x_1 - x_2|} \quad (8.23)$$

We can then rewrite the Hartree term as:

$$\begin{aligned} \hat{V}_H(x) &= \sum_{j=1}^N \int dx_2 e^2 \frac{|\phi_{n_j}(x_2)|^2}{|x - x_2|} \\ &= e^2 \int dx_2 \frac{\sum_{j=1}^N |\phi_{n_j}(x)|^2}{|x - x_2|} \\ &= e^2 \int dx_2 \frac{\rho(x_2)}{|x - x_2|},. \end{aligned}$$

That is, the second term in the Hartree Fock equation can be interpreted as an effective potential generated by the average potential generated by surrounding particles. That is, the *Hartree potential energy is a functional of the density $\rho(x)$* , as ρ is a function of a single variable. Note, however, that the potential term depends on the wave-functions of all the other electrons.

If the exchange term V_E is negligible, then the initial N -body problem reduces to a one-body problem leading to the simplified Hartree equation:

$$-\frac{\hbar^2}{2m} \nabla^2 \phi_{n_i}(x) + \hat{V}_H(x) \phi_{n_i}(x) = \epsilon_i \phi_{n_i}(x). \quad (8.24)$$

The Hartree energy is then given by:

$$E = \sum_{i=1}^N \langle \phi_{n_i} | \hat{t} | \phi_{n_i} \rangle + \int dx_1 \int dx_2 e^2 \frac{\rho(x_1)\rho(x_2)}{|x_1 - x_2|}. \quad (8.25)$$

While the Hartree equation has simplified the problem in the sense that we now have a set of equations for each of the one-body wavefunctions, solving these exactly is challenging as the potential term depends on the wavefunctions of all the particles via the density term $\rho(x)$. So to go further the general strategy is to pick a clever guess functional form for the density and then apply the variational principle. This is the core idea of what is known as *density functional theory* - a very powerful and widely used tool for approximating the energetic structure of many-body systems. At its core is the following Theorem:

Theorem 8.3.2 (First Hohenberg-Kohn Theorem). *The energy E of the ground state of an N -particle system defined by \hat{H} is an unknown functional of the density $\rho(x)$.*

If you are interested in knowing more on this I recommend Giuseppe Carleo's master's course on methods for simulating quantum systems.

Chapter 9

Symmetry in quantum mechanics

9.1 Introduction

Right and so we begin the ‘symmetry in quantum mechanics’ part of the course. My aim here is to give you a little taste of group and representation theory and its relevance to quantum mechanics. You will not learn much new actual physics in this section - but I hope to try and convey the deep mathematics underlying many quantum phenomena that you have already seen (e.g., the presence of degeneracy, the addition of angular momentum, and, if we have time, dephasing). Group and representation theory is a massive area of mathematics and I will only scratch the surface - my main aim is to make it *relatively* friendly to leave you comfortable with the basic ideas and keen to learn more for future courses/projects! One thing that is perhaps worth highlighting here is group theory appears in all sorts of places you don’t expect it. For example, it can be used to encode symmetries for more efficient machine learning models. Therefore, even if you are fed up of physics and cannot wait to get a job earning money as a software developer - this part of the course could be very useful for you.

These notes are driven by the pedagogical philosophy that most people learn best by examples and intuition. Therefore, throughout these notes I try as hard as I can to provide examples and more informal handwavey explanations of the key ideas wherever possible. In places I have sacrificed some formality to do so. I have also for the sake of time relegated some of the longer proofs to the appendices. If you are interested in a more formal presentation of this material (and more that I will not cover) I have uploaded to moodle Vincenzo Savona’s old notes (in French and English). However, I hope my notes will prove helpful to those of you who also like examples and an attempt at more wordy explanations. For those of you that do like a ‘physicist-approach-to-maths’ I cannot recommend enough Group Theory In A Nutshell For Physicists. It’s longer and more detailed that you will need for this course but a very friendly read. I’ll try and point out useful sections where relevant. Lie Algebras for Physics is also good but its even more detailed than needed.

9.1.1 Motivational examples: Symmetry is everywhere in quantum!

Spatial translations. By way of introduction let’s start with a simple example considering spatial translations that I have borrowed from Terry Rudolph. Suppose I asked you to write down a wavefunction $\psi(x)$ that is invariant under arbitrary translations in x , i.e. $x \rightarrow x + a$ for any a . What could you write down?

Intuitively if it’s anything other than constant in x then the function will not be spatially

invariant, i.e. we've got to have $\psi(x) = \text{constant}$. In Terry's words - *It is questionable whether this is valid - is it normalizable for example? But imagine we plough ahead like good physicists and ignore the mathematical difficulties.* If we Fourier transform this wavefunction then we get that this wavefunction can be written in the momentum basis as $\phi(p) = \delta(p)$ (the Fourier transform of the constant function is a delta function).

But is this the only function that is invariant under spatial translations? What if we instead consider a function of the form $\psi(x) = e^{ipx}$? Then we see that translating $x \rightarrow x + a$ produces only an extra "overall phase" of e^{ipa} . This is a global phase and so doesn't change anything physical about the state. That is, the state is (up to a non-physical global phase) also invariant under translations. If we again Fourier transform to the momentum representation we now have $\psi(x) = e^{ip'x}$ is $\phi(p) = \delta(p - p')$, so this is a state of fixed definite momentum p' . That is, momentum is conserved in this translationally invariant state.

In Terry's words again we learn two things from this example: *(i) that we should only expect a small subset of the possible quantum states to obey a particular symmetry, and (ii) that there can be an intimate connection between a particular observable (momentum) and that symmetry.*

Now imagine we have prepared one of these translationally invariant states, e.g. a momentum eigenstate. Under what Hamiltonian evolutions will it remain translationally invariant/a momentum eigenstate? Intuitively we need any potential $V(x)$ to also be translationally invariant, otherwise this will break the initial translational symmetry. This means the only potential Hamiltonian is the free particle Hamiltonian $H = \frac{1}{2m}\hat{p}^2$. Or, more concretely, we require that

$$[e^{-i\hat{p}b}, \hat{H}] = 0. \quad (2)$$

which will be true for any Hamiltonian such that $[\hat{p}, \hat{H}] = 0$. Thus we see that *the property of translational symmetry is associated with 'conservation of momentum'.*

A similar story could be told about the relationship between rotational invariance and angular momentum. And both of these cases are symptomatic of a much deeper story about the intimate connection between conservation laws and stuff that commutes with a Hamiltonian and symmetries. This can be made precise and of sweeping generality in Noether's theorem. But let's start with the basics and pin down a more general mathematical formalism to discuss symmetries.

The mystery of degeneracy. When you diagonalize a generic Hermitian matrix, the eigenvalues will in general be distinct. But for physical Hamiltonians of quantum systems we often find that the eigenvalues are degenerate - that is there are distinct eigenstates with the same eigenenergy. In the early days of quantum mechanics this was somewhat surprising! We will see that this can be explained by symmetry properties of a system.

Consider a unitary transformation U that leaves H invariant, i.e.,

$$U^\dagger H U = H. \quad (9.1)$$

Or, equivalently, we have

$$H U = U H. \quad (9.2)$$

Given that U commutes with H we have that if $H|\psi\rangle = E|\psi\rangle$, then

$$H U |\psi\rangle = U H |\psi\rangle = U E |\psi\rangle = E U |\psi\rangle. \quad (9.3)$$

That is, the action of U on a state $|\psi\rangle$ produces an eigenstate of H with the same energy E . Or, in other words, U produces another degenerate eigenstate.

More generally, given a family of transformations $\{U\}$ there will be a corresponding family of degenerate energy eigenstates. That is, the presence of a symmetry gives rise to degeneracy. We will see later how group and representation theory will provide a means of predicting/explaining the number of degenerate states.

9.1.2 Introduction to groups

A symmetry describes some property of a system, i.e. some function f or of some dataset \mathbb{R} , which is left unchanged under some transformation. As we are, for the purpose of this course, predominantly interested in quantum systems, let's suppose that the transformation refers to a *unitary evolution*¹ applied to the quantum state, i.e., to a map $\rho \rightarrow U\rho U^\dagger$ for some U . Now crucially, such symmetry transformations form a *group*.

Proposition 9.1.1. *Let G be the set of all unitary symmetry transformations, such that for any $U \in G$, the map $\rho \rightarrow U\rho U^\dagger$ leaves some property of ρ unchanged. Then, G , equipped with multiplication, forms a group.*

What is a group?

Definition 9.1.2. A group is a set equipped with an operation that combines any two elements to form a third element while being associative as well as having an identity element and inverse elements.

Formally, one can write a set G equipped with the operation " $*$ " is a group if one has:

- G is closed under the operation $*$. That is, if $a \in G$ and $b \in G$ then $a * b \in G$.
- Associativity: $\forall a, b, c \in G$, one has $(a * b) * c = a * (b * c)$.
- An identity element: There exists an element $e \in G$ such that $e * a = a = a * e \forall a \in G$. Such an element is unique and is called the identity of the group.
- Inverse element: $\forall a \in G$, it exists $b \in G$ such that $b * a = a * b = e$. We then say that $b = a^{-1}$. For each a the element a^{-1} is unique and is called the inverse of a .

How can we see that any unitary that leaves a property invariant forms a group with $*$ matrix multiplication (i.e. that Proposition 9.1.1 is true)? With a little thought we can see that each of the defining properties of a group are satisfied.

- Closure: Given any two unitaries U and V in G , the unitary $V * U$ obtained by multiplying V and U is also a symmetry transformation. This follows from the fact that concatenating two property-preserving transformations $\rho \rightarrow U\rho U^\dagger \rightarrow V * U\rho U^\dagger * V^\dagger$ constitutes in itself a property-preserving transformation.
- Associativity: for any unitaries U, V, W we have $U(VW) = (UV)W$.
- Identity element: Clearly the identity matrix I leaves any property of a state unchanged and for any unitary we have $IU = U$ and so I is indeed the identity element e .

¹We will encounter and work with symmetry representations that are ostensibly not unitary. However, a wide class of representations are equivalent to unitary ones. In particular, Wigner's theorem guarantees that all symmetry transformations of quantum states preserving inner products are either unitary or antiunitary, and often antiunitary transformations are “unitary and complex conjugation”.

- Inverse: For each U in G , there exists an element U^\dagger in G such that $U * U^\dagger = U^\dagger * U = I$, where I is the identity matrix, and U^\dagger is the inverse (conjugate transpose) of U because if U conserves some property, then U^{-1} also conserves that property.

In broad terms *groups* encode abstract symmetries, and *representations* describe concrete realisations of those symmetries in physical systems. In most maths courses people learn about groups first before moving onto representations later. However, in practise, in everyday physics we often identify symmetries at the level of the representation and then “abstractify” them: i.e. connect a familiar physical symmetry with some familiar abstract mathematical group.

To quote Representation Theory for Geometric Quantum Machine Learning: *“The main utility of this abstractification procedure is that groups as mathematical objects have been thoroughly studied since the early 19th century, and a wealth of information is readily available for scores of them. Moreover, in the eyes of physics, the list of abstract groups is surprisingly short, thanks in large part to classification programs for finite groups and semisimple Lie groups—and nature’s seeming preferential treatment of these groups—this means that identification is direct in many cases.”* That is, if you have a physics (or perhaps even a classical machine learning) problem and can identify the relevant group - odds are some long dead mathematician has already half solved your problem and so you can save yourself a lot of work.

In broad terms a representation is a map from the elements of a group to a set of unitaries² such that the unitaries obey the same properties under composition as the original group. We will define this more formally later but I just wanted to mention it informally now because I think it helps to understand why we care about groups in the first place- the key point being often in practise we will identify the representation first and then abstractify to find the underlying group and then plug in centuries of maths to help us understand it better.

9.1.3 Finite group examples

Groups can be either finite or continuous. Let's consider some examples of finite groups first.

Definition 9.1.3 (Finite group). A group that contains a finite number of element is called a finite group. The number of element is called the *order* of the group.

One way to uniquely identify a group is via its Cayley table. Named after the 19th century British mathematician Arthur Cayley, a Cayley table describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an addition or multiplication table. Many properties of a group can be discovered from its Cayley table.

Order 1 group. The only group with only one element is the trivial group containing just the identity element, e.g. $G = e$. Its Cayley table can be written as:

$$\begin{array}{c|c} * & e \\ \hline e & e \end{array} \quad (9.4)$$

A possible representation of this group is $e \rightarrow I$.

Order 2 group. The unique Cayley table for a group with only two elements is the group where the only non-identity element is its own inverse element, e.g. $G = e, a$ such that $aa^{-1} =$

²Representations need not strictly be unitary but essentially all the ones we'll care about here will be.

$aa = e$, i.e.

*	e	a
e	e	a
a	a	e

(9.5)

One possible group with this Cayley table is $G = \{1, -1\}$ with $*$ standard scalar multiplication. (In this case, the map $e \rightarrow 1$ and $a \rightarrow -1$ is a representation of the group)

Other examples include the groups composed of $G = \{I, X\}$, $G = \{I, Z\}$ and $G = \{I, \text{SWAP}\}$ with $*$ matrix multiplication. (In this case, the maps $e \rightarrow I$, $a \rightarrow X$ and $e \rightarrow I$, $a \rightarrow Z$ and $e \rightarrow I$, $a \rightarrow \text{SWAP}$ are representations of the group).

Another possible group with the same Cayley table is the parity group that contains the "transformation in the mirror" that turns x into $-x$. Let us define the operator \hat{P} such that $\hat{P}f(x) = \hat{P}f(-x)$. Given $\hat{P}\hat{P} = 1$, we see that the set of transformation $\{1, \hat{P}\}$ form a group.

All of these groups are isomorphic (share the same Cayley table) to the \mathbb{Z}_2 group (cyclic group on 2 elements). The Cayley table captures the fundamental symmetry but it can manifest in different ways.

Order 3 group. The unique (it might not be obvious now that it is unique - we will come back to this in a bit) Cayley table for a group with only three elements is the \mathbb{Z}_3 group (cyclic group with three elements):

*	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

(9.6)

An example of such group is the set of 2D rotations that leave a triangle invariant. Or the 3rd roots of unity in the complex plane $a_j = e^{i2\pi\frac{j}{3}}$ equipped with multiplication.

Order 4 groups. Again we can consider the cyclic group \mathbb{Z}_4

*	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

(9.7)

An example of such group is the set of 2D rotations that leave a square invariant. Or the 4th roots of unity in the complex plane.

But 4th order is also the smallest order that is not unique. That is, there is another possible Cayley table for a group of four elements that is not isomorphic (i.e. the same up to relabeling) as the Cayley table above:

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

(9.8)

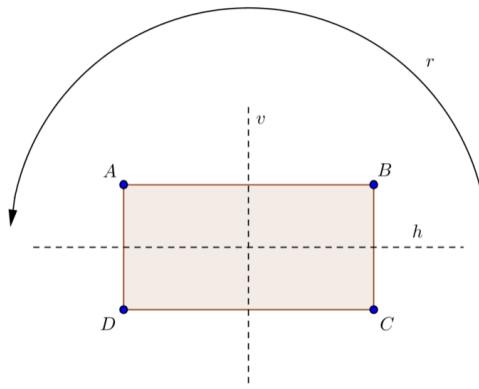


Figure 9.1: Diagram of the symmetry group of a rectangle (dihedral group R_2): (Wiki page on the Dihedral group).)

Note that here each element is its own inverse but there are cyclic transformations between a , b and c . An example of such a group would be the symmetries of a rectangle as sketched in Fig. 9.1. The group elements are identity e , rotation r (in either direction) by π and reflections h and v about the horizontal and vertical axes respectively.

Order 6 groups. Again we can consider the cyclic group \mathbb{Z}_6 . Alternatively we can have:

*	e	a	a^2	b	c	d
e	e	a	a^2	b	c	d
a	a	a^2	e	c	d	b
a^2	a^2	e	a	d	b	c
b	b	d	c	e	a^2	a
c	c	b	d	a	e	a^2
d	d	c	b	a^2	a	e

(9.9)

This is called the $C3v$ group.. This is the symmetry group of a triangle as shown in Fig. 9.2. There are 6 possible transformations that leave the triangle invariant:

- The identity e which leaves all coordinates unchanged.
- The proper rotation c_+ by an angle of $2\pi/3$ in the positive trigonometric sense (i. e. counter-clockwise). And the clockwise version c_- .
- Reflection along each axis (there are three of them).

See Fig. 9.2 for a sketch of this. The $C3v$ also captures the symmetry of the Ammonia molecule, NH_3 . There will be a question on the problem sheet this week on this. This will be one of our favorite example groups so its worth becoming very familiar with it.

Other important (larger) finite groups include:

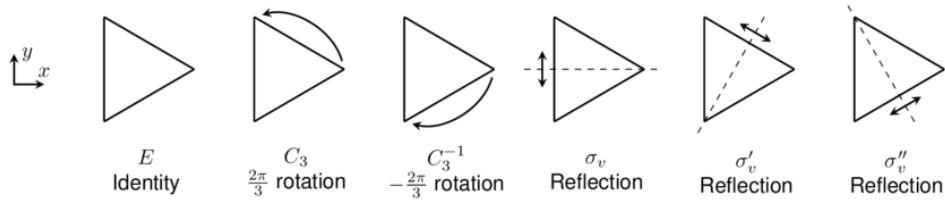


Figure 9.2: Diagram of the symmetry group of a triangle (C_3v). Note that I used the notation $c_+ = C_3$ and $c_- = C_3^{-1}$ to denote the rotations but this image uses C_3 and c_- . I took this image from (Fundamental properties of 2D excitons bound to single stacking faults in GaAs).)

The cyclic group \mathbb{Z}_n . For completeness, of course we can also consider the cyclic group of n objects \mathbb{Z}_n

*	e	a_1	a_2	\dots	a_{n-1}	
e	e	a_1	a_2	\dots	a_{n-1}	
a_1	a_1	a_2	a_3	\dots	e	
a_2	a_2	a_3	a_4	\dots	a_1	
\vdots						
a_{n-1}	a_{n-1}	e	a_1	\dots	a_{n-2}	

Examples of such groups include the set of 2D rotations that leave a regular n -sided polygon invariant and the n th roots of unity $a_j = e^{i2\pi\frac{j}{n}}$ in the complex plane.

Symmetric permutation group S_n . The group is composed of the group of all possible permutations of n objects with the group operation the composition of functions.

As there are $n!$ such permutations operations the order of the symmetric group is $n!$

For example, $S_3 = \{I, \text{SWAP}_{12}, \text{SWAP}_{13}, \text{SWAP}_{23}, \text{CYCLE}_{123}, \text{CYCLE}_{321}\}$. (What is the CAYLEY table for this group? ³)

This is a very important group in quantum physics as (as we saw earlier) it is the symmetry group of systems of indistinguishable particles.

9.1.4 Continuous group examples

A non-finite group is a continuous group. Of particular importance are *Lie* groups ⁴.

Definition 9.1.4 (Lie group). Informally, a Lie group is a continuous group that depends *analytically* on some continuous parameters λ .

We list some important examples of Lie groups below.

³Hint we have already seen that there are only two possible tables for an order 6 group

⁴Note that not all infinite groups are Lie groups! The set of all rational numbers equipped with addition is infinite (but countable), but it is not a Lie group. But again, we're physicists not mathematicians and all the continuous groups we'll care about (at least in this course) will be Lie groups.

Real d -dimensional rotations $SO(d)$. A classic example of a Lie group is the group of all rotation matrices (i.e. orthogonal matrices with determinant 1) for real d dimensional rotation vectors. An orthogonal matrix is the real analogue of a unitary matrix and is defined by the properties $\Re[M] = M$ and $MM^T = M^TM = I$. For an orthogonal matrix to be a rotation matrix we also require that $\det(M) = 1$.

For example, the elements of the group $SO(2)$ (i.e. rotation matrices in $2D$) can be written as

$$M(\phi) = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}. \quad (9.11)$$

Another commonly encountered case is $SO(3)$ which corresponds to all rotations in $3D$.

The orthogonal group $O(d)$. Another example of a continuous group is $O(d)$ which is simply the group of orthogonal matrices (i.e. without the restriction that the determinant of the matrices equals 1). Orthogonal matrices preserve the inner product between real vectors $\langle x'|y' \rangle = (\langle x|O^T)(O|y\rangle) = \langle x|O^TO|y\rangle = \langle x|y\rangle$. They thus correspond to rotations and reflections.

Note that the determinant of any orthogonal matrix is $+1$ or -1 . This follows from $1 = \det(I) = \det(M^TM) = \det(M^T)\det(M) = (\det(M))^2$. Orthogonal matrices with a -1 determinant can implement reflections, e.g.

$$M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad (9.12)$$

performs a reflection of the vector (x, y) in the y -plane.

The unitary group $U(d)$. $U(d)$ is the group of $d \times d$ dimensional unitary matrices. This is the group of matrices that preserve the length/inner product of quantum states.

For example, $U(1)$ can be represented just as the unit circle in the complex plane $[e^{i\phi}]$. Or it can be represented as a rotation around any single axis on the Bloch sphere, e.g. $[R_z(\phi)]$ where $R_z(\phi) = e^{-i\phi Z}$.

Similarly, $U(2)$ represents all 2-dimensional unitaries, that is all unitaries on a single qubit. We recall that any single qubit unitary can be written as

$$R(\mathbf{n}, \theta, \phi) = e^{-i(\phi I + \theta \mathbf{n} \cdot \boldsymbol{\sigma})} \quad (9.13)$$

where we stress that for full generality we need to include the global phase term generated by ϕI . However, this global phase is unphysical. This motivates the consideration of instead the special unitary group.

The special unitary group $SU(d)$. $SU(d)$ corresponds to the group of unitary matrices with determinant 1. The restriction to determinant 1 effectively fixes the arbitrary global phase. To see this note that multiplying a unitary matrix by a phase matrix $e^{-i\phi} I$ manifests as a change in the phase of its determinant as $\det(e^{-i\phi} IM) = \det(e^{-i\phi} I) \det(M) = e^{-id\phi} \det(M)$.

For example $SU(2)$ corresponds to the group of unitary rotations to a single qubit that can be written as

$$R(\mathbf{n}, \theta) = e^{-i\theta \mathbf{n} \cdot \boldsymbol{\sigma}}. \quad (9.14)$$

Recall that this can be represented as the set of rotations of the Bloch vector of a state on the Bloch sphere. This would seem to be *in some sense* equivalent to the group $SO(3)$, i.e. the group of real rotations in 3D. Indeed the groups $SU(2)$ and $SO(3)$ are very closely related - more on this in a bit.

9.2 Basic definitions and properties of groups

Now that you're equipped with a whole zoo of examples let's go back to looking at the basic mathematical structure of groups and some of their most important properties.

Definition 9.2.1 (Abelian and non-Abelian groups). : If $a * b = b * a \forall a, b \in G$, the group G is said to be Abelian. Otherwise it is called a non-Abelian group. These groups are also called commutative and non-commutative.

For example, $U(1)$ is Abelian (phases commute) but $U(2)$ is not (arbitrary unitaries do not commute). As we will see later, whether or not a group is Abelian effects some of their most fundamental properties. (In particular, Abelian groups tend to be much simpler to study).

Another important concept is that of a subgroup.

Definition 9.2.2 (Subgroup). A subset H of the group G is a subgroup of G if and only if it is nonempty and itself forms a group.

The closure conditions mean the following: Whenever a and b are in H , then $a * b$ and a^{-1} are also in H . These two conditions can be combined (*exercise: show this!*) into one equivalent condition: whenever a and b are in H , then $a * b^{-1}$ is also in H . The identity of a subgroup is the identity of the group: if G is a group with identity e_G , and H is a subgroup of G with identity e_H , then $e_H = e_G$.

Definition 9.2.3 (Proper Subgroup). We call a subgroup of G which is neither the identity nor G itself a *proper* subgroup.

A fundamental result in the theory of finite groups is Lagrange theorem:

Theorem 9.2.4 (Lagrange). *Let G be a finite group and H a subgroup of G , then the order of H (i.e. the number of its elements) divides the order of G .*

We prove this theorem in sec.9.10.3.

It is easy to see that this implies in particular that if the order of a group is prime then there is only one possible group (i.e. one unique Cayley table) for that group. To see this note that if the order n of a finite group G is a prime, then it has no divisors, and so no subgroups. The only group with no proper subgroups is the cyclic one Z_n for prime n - so this is the unique group. Recall that I claimed earlier that Z_3 was the unique group with 3 elements - this is why.

Let's look back at the non-cycle 4th order group we discussed earlier with the Cayley table:

*	e	a	b	c	
e	e	a	b	c	
a	a	e	c	b	
b	b	c	e	a	
c	c	b	a	e	

(9.15)

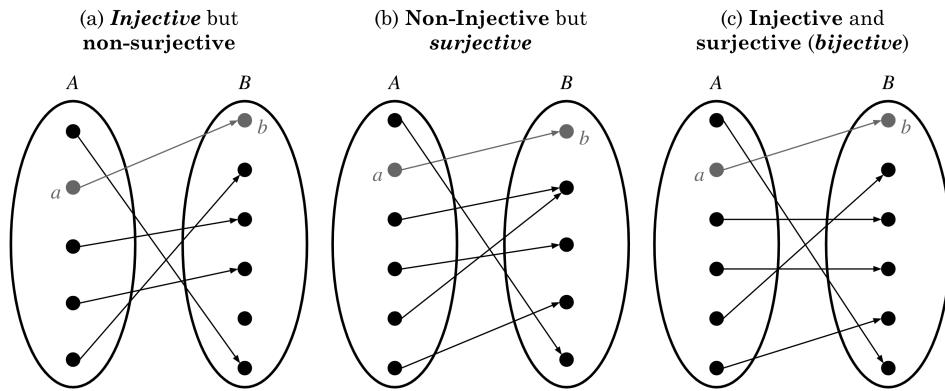


Figure 9.3: Diagram of injective, surjective and bijective functions: (Wiki page on functions).)

This has subgroups $\{e, a\}$ and $\{e, b\}$ and $\{e, c\}$ which are all \mathbb{Z}_2 groups. Or, thinking more physically and recalling that this corresponds to the symmetries of a rectangle as sketched in Fig. 9.1, identity and any one of the transformations (e.g. rotation by π , reflection in the horizontal axis, reflection in the vertical axis) each forms a group because each of these transformations are self-inverse.

Exercise: What are the subgroups of $C3v$ group? Does this make sense in terms of the symmetries of the Ammonia molecule, NH_3 ?

Group Homomorphism and isomorphism The final important concept I will discuss in this section is that of group homomorphisms and isomorphisms. This formalises the important idea that I have been repeatedly hinting at but glossing over - the idea of superficially different looking groups being the same in some sense.

A group homomorphism, is a mapping between two groups which respects the group structure:

Definition 9.2.5 (Group homomorphism). A function from a group $(G, *)$ to the group $(G', *)$ is an application $f : G \rightarrow G'$ such that $\forall x, y \in G \quad f(x * y) = f(x) * f(y)$. (This implies that $f(e) = e'$, where e and e' denote the respective neutrals of G and G' and $f(x^{-1}) = f(x)^{-1}$.)

For instance, it is always possible to create a morphism of any finite group to the trivial group by mapping all the elements to e' . A less trivial example is that the group \mathbb{Z}_2 is homomorphic to $Z = \{\dots, -3, -2, -1, 0, 1, 2, \dots\}$ equipped with addition using $f(x) = 1$ for even numbers and $f(x) = -1$ for odd numbers for $x \in Z$.

A homomorphism from $f : G \rightarrow G'$ can be bijective, i.e. be a map with a one-to-one correspondence between elements in the domain and range as sketched in Fig. 9.10. In this case, we call the mapping an isomorphism.

Definition 9.2.6 (Group isomorphism). A group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations.

If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished. In the case of finite groups, this means that the groups have the same Cayley table.

For example, $G = \{1, -1\}$ with $*$ standard scalar multiplication, $G = \{I, X\}$ or $G = \{I, \text{SWAP}\}$ with $*$ matrix multiplication are isomorphic to \mathbb{Z}_2 . Similarly, multiplication on the unit circle in the complex plane $[e^{i\phi}]$ and rotation around any single axis on the Bloch sphere, e.g. $[R_z(\phi)]$ where $R_z(\phi) = e^{-i\phi Z}$, are isomorphic to $U(1)$. (However, \mathbb{Z}_2 is homomorphic, but not isomorphic, to \mathbb{Z} equipped with addition).

9.3 Basic definitions and properties of representations

Let us now return to representations. As I mentioned earlier *groups* encode abstract symmetries but *representations* describe concrete realisations of those symmetries. Informally, a representation of a group captures the action of a group on a vector space (e.g. on quantum states). In particular, in a quantum context, it is a map from the elements of a group to a set of unitaries such that multiplication of that set of unitaries obeys the same properties as the original group. For example, the group Z_2 can be represented as $\{1, X\}$ and $\{1, \text{SWAP}\}$ acting on C^2 and $(C^2)^{\otimes 2}$ respectively. We can formally define the notion of a representation of a group via the notion of homomorphisms introduced above.

Definition 9.3.1 (Group representation). A representation R of a group G on a vector space V is a group homomorphism⁵ from G to a set of matrices that act on a vector space V . The dimension of a representation R is defined to be the dimension of the vector state V , i.e., $\dim(R) = \dim(V)$.

We can think of this pictorially as:

$$\begin{array}{c} g_1 \cdot g_2 = g_1 \cdot g_2 \\ \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\ D(g_1) \cdot D(g_2) = D(g_1 \cdot g_2) \end{array}$$

where $D(g)$ is a $d \times d$ dimensional matrix that acts on a d dimensional vector space V .

We stress that formally a representation is by definition the *map* R . However, more informally the word representation is used in multiple ways. For example, informally you might hear someone discuss the $\{1, \text{SWAP}\}$ representation of Z_2 . Technically $\{1, \text{SWAP}\}$ is a group (that is isomorphic to Z_2) and the representation is the map R such that $R(e) = I$ and $R(a) = \text{SWAP}$ (where the properties of a and e are captured by the Z_2 Cayley table). As long as you remember that fundamentally it is the underlying map that is the representation, this casual way of speaking shouldn't cause too much confusion in practise⁶.

Let us give a few examples:

Trivial representation. All groups admit a trivial representation (or the Identity representation): $\forall g \in G, R(g) = I$.

Examples representations for the parity group $Z_2 = \{e, a\}$.

- As we said before we have the representations $G = \{1, X\}$ and $G_{\text{SWAP}} = \{1, \text{SWAP}\}$ acting on C^2 and $(C^2)^{\otimes 2}$ respectively. You could also have⁷ $G = \{1, Z\}$ on C^2 .
- On \mathbb{R} it has two representations: 1) the trivial representation $R(g) = 1$ for $g = e, a$, as well as 2) the representation $R(e) = 1, R(a) = -1$.

⁵in most cases we will look at it will also be an isomorphism, i.e., a one-to-one map

⁶This subtlety is put nicely in Representation Theory for Geometric Quantum Machine Learning: *As an unfortunate feature of the subject, the word “representation” can equivalently refer to the group homomorphism R , the vector space upon which it acts V , or the image subgroup $R(G) \subset GL(V)$. Once one gets used to this, it is not as bad as it sounds: in practice, one often thinks of a representation as being the shared data of the vector space V and the linear action of G on that vector space.*

⁷This is in fact equivalent to the $G = \{1, X\}$ as they are related by a unitary transformation. More on equivalent transformations in a bit.

- The trivial representation $\{I\}$ can also of course be defined on a vector space of any dimension.

Examples representations for $O(3)$. Consider $O(3)$ the group of orthogonal matrices in dimension $d = 3$. We recall that this is the set of all 3×3 matrices M such that $MM^T = I$.

- The simplest representation, called the fundamental representation, is simply the set of all 3×3 orthogonal matrices.
- The morphism $R(g) = \det(M) = \pm 1$ is a representation of $O(3)$ on the vector space \mathbb{R} (indeed $\det(AB) = \det(A)\det(B)$).

Fundamental representation of continuous groups. All continuous groups have the a ‘fundamental’ representation where the matrices in the group and the matrices in the representation coincide (“up to change of basis”)⁸.

Adjoint representation. Another important representation that is possible for any group is the adjoint representation. Thus far we have considered representations that map vectors to vectors, it is also possible to consider representations that map matrices to matrices. Let $V = M_2(\mathbb{C})$ denote the set of 2×2 complex matrices. The linear super-operator

$$A \mapsto U_g A U_g^\dagger \quad (9.16)$$

where $U_g = R(g)$ is a possible representation of G . For example, $U \dots U^\dagger$ for $U \in SU(2)$ is a representation of $SU(2)$.

So far we have spotted the representations corresponding to a symmetry group just by ‘seeing them’. In fact, as I discussed earlier, the process often in physics goes the other way around. We know the symmetry at the level of the representation and then abstractify to identify the underlying group. But what about going the other way around - what if we have a group, and don’t know any of its (non-trivial) representations, and want to find one?

Regular representation of finite groups. All finite groups admit what is known as the ‘regular’ representation as one of its representations.

Definition 9.3.2 (Regular representation). For a finite group of order h , one can construct the so-called regular representation using $h \times h$ matrices as follows. First start from the following *reordered* Cayley table (here for $h = 3$):

$$C = \begin{array}{c|ccc} * & e & a^{-1} & b^{-1} \\ \hline e & e & a^{-1} & b^{-1} \\ a & a & e & ab^{-1} \\ b & b & ba^{-1} & e \end{array} \quad (9.17)$$

Now the representation can be done using the following matrices for $g \in G$: We use a matrix which is zero everywhere except for the position that corresponds to the group element in the Cayley table:

$$(R(g))_{ij} = \delta_{g,C_{ij}} \quad (9.18)$$

⁸Note that although the matrices between the group G and its representatives $\{R_g : g \in G\} \subseteq \text{GL}(V)$ are identical, we think of the abstract group and its representatives as conceptually distinct.

With this definition, e is represented by the identity matrix $R(e) = I$. It is easy to check that these matrices indeed follow the group algebra. You'll work through some examples of this in the problem sheet.

It is also possible to construct representations from a simpler (set of) already known representations.

Equivalent representations. Consider a group G and a representation $R(g) \forall g \in G$. We define now $R'(g) = SR(g)S^{-1}$ where S can be any invertible matrix (in practise, in most cases we come across, it will be a unitary matrix). This is a *similarity* transformation⁹. It is easy to see that similarity transformations of representations are still representations. It is straightforward to verify that $R'(g)$ is a representation of G (i.e., if $R(gh) = R(g)R(h)$ then $R'(gh) = SR(g)R(h)S^{-1} = SR(g)S^{-1}SR(h)S^{-1} = R'(g)R'(h)$).

Definition 9.3.3 (Equivalent representation). Two representations D and D' are equivalent if they are related by a similarity transformation $R'(g) = SR(g)S^{-1}$.

Roughly speaking, representations are equivalent if we can transform one to the other by a linear invertible transformation. If what follows, we shall be mainly concerned by unitary representations and transformations. In this case $SS^\dagger = 1$ and $S^\dagger = S^{-1}$. This means that we shall consider two representations as equivalent if they simply correspond to a change of basis: $R'(g) = UR(g)U^\dagger$.

Tensor product representation. For example, consider two representations R_1 and R_2 for a group G , it is straightforward to verify (*check this!*) that the tensor product of their representations $R_1 \otimes R_2$, i.e. the set of matrices such that

$$R_1(g) \otimes R_2(g) \tag{9.19}$$

for each element g , is also a representation. For example, $\{I \otimes I, Z \otimes Z\}$ is a representation of Z_2 (in fact, $\{I^{\otimes k}, Z^{\otimes k}\}$ is a representation for any k).

Tensor product representations are fundamental in physics whenever we take the symmetry property of a single system and want to study the properties of a composite system. For example, suppose we have a system of n particles each of which are $SU(2)$ symmetric. In this case, we will be interested in the representation of $SU(2)$ on $(C^2)^{\otimes n}$, and so a natural choice is $SU(2)^{\otimes n}$.

Direct sum representation. Another useful composite representation, one that plays a key role in physics, is the direct sum representation.

Definition 9.3.4. Consider two representations R_1, R_2 of a group G acting on vector space V_1, V_2 . The direct sum $R_1 \oplus R_2$ is a representation of G acting on $V_1 \oplus V_2$ defined by

$$(R_1 \oplus R_2)(g)(v_1, v_2) := (R_1(g)v_1, R_2(g)v_2), \quad \text{for all } g \in G. \tag{9.20}$$

Or, writing the matrices out explicitly, $R_1 \oplus R_2$ acting on $V_1 \oplus V_2$ we have:

$$(R_1 \oplus R_2)(g) := \begin{pmatrix} R_1(g) & 0 \\ 0 & R_2(g) \end{pmatrix}, \quad \text{for all } g \in G. \tag{9.21}$$

⁹In linear algebra, two $n \times n$ matrices A and B are called similar if there exists an invertible n -by- n matrix P such that $B = P^{-1}AP$.

That this is indeed a representation follows straightforwardly from the block structure of Eq. (9.21). (If this isn't immediately clear to you, do work through it explicitly). We can also take the direct sum of the same representation, i.e., $R_1 \oplus R_1$, in which case we say that R_1 has multiplicity of two, and we write

$$(R_1 \oplus R_1)(g) = \begin{pmatrix} R_1(g) & 0 \\ 0 & R_1(g) \end{pmatrix} = I \otimes R_1(g), \quad \text{for all } g \in G. \quad (9.22)$$

Notice that due to the block structure of a direct sum representation the action of an element of the representation structure of a group leave certain subspaces invariant. This will turn out to be very important.

Hopefully it is now clear how you can take simple representations of a group and create more complex ones. In many cases, we will in fact be more interested in going in the other direction. Taking a complex representation and trying to break it down into a simpler one. More concretely, one of the things representation theory is most useful for is *taking a representation (e.g. say a tensor one), and expressing it as a direct sum of representations on smaller subspaces*. We will discuss this in Section 9.4

9.4 (Ir)Reducible Representations of Groups

Our goal here will be discuss when/how it is possible to decompose a representation into a direct sum of other representations and, hopefully, give a sense of why we might be interested in doing this in the first place.

9.4.1 Warm up example

Consider a two qubit system and the tensor product representation of $SU(2)$ on this space, i.e.

$$R(g) = U_g \otimes U_g. \quad (9.23)$$

Can we decompose this into the direct sum of two other representations? That is, can we block diagonalize $U_g \otimes U_g$, i.e., write it in the form

$$R_1(g) \otimes R_2(g) = \begin{pmatrix} A(g) & 0 \\ 0 & B(g) \end{pmatrix} \quad (9.24)$$

where M and B for all g

To answer this we first note that $U_g \otimes U_g$ commutes with the SWAP operator $[U_g \otimes U_g, \text{SWAP}] = 0$. This means that it is possible to (block¹⁰) diagonalize $U_g \otimes U_g$ in the same basis as the SWAP. More generally, the following proposition holds.

Proposition 9.4.1. *Let $R(g) = U_g$ be a representation of a group G , and let H be a Hermitian operator such that $[U_g, H] = 0$ for all $g \in G$. Then, for any eigenvector $|\psi\rangle$ of H with eigenvalue λ , $U_g|\psi\rangle$ is also an eigenvector of H of eigenvalue λ . That is, H is simultaneously block diagonalized with U_g .*

¹⁰The fact we have ‘block diagonalized’ rather than simply ‘diagonalized’ here allows for the fact that H and U_g can have degenerate eigenvalues

Demo. Observe that $HU_g|\psi\rangle = U_gH|\psi\rangle = \lambda U_g|\psi\rangle$. This means that H and U_g are (block) diagonal in the same basis ¹¹. \square

Next we recall that the SWAP operator has eigenvalue 1 on the symmetric subspace spanned by the degenerate eigenstates $\{|11\rangle, |01\rangle + |10\rangle, |00\rangle\}$ and eigenvalue -1 on the anti-symmetric subspace spanned by $\{|10\rangle - |01\rangle\}$. That is, it is block diagonalized in the symmetric-antisymmetric decomposition.

It thus follows that the tensor representation $U_g \otimes U_g$ is also block diagonalized by the symmetric-antisymmetric decomposition of V : i.e., in the basis $\{|11\rangle, \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), |00\rangle, \frac{1}{\sqrt{2}}(|10\rangle - |01\rangle)\}$. That is, every representative $U_g \otimes U_g$ can be expressed as

$$U_g \otimes U_g = \begin{pmatrix} & & 0 & \\ & & 0 & \\ & & 0 & \\ \hline 0 & 0 & 0 & \end{pmatrix} \quad (9.25)$$

where \square indicates the blocks to be filled in with the appropriate matrix elements. That is, the claim is that if you take any matrix constructed from the tensor product of two single qubit matrices and write it in the Bell basis ¹², it will have the block diagonal form shown above ¹³.

Note that this decomposition, Eq. (9.25), also implies the existence of *invariant subspaces* under the action of $U_g \otimes U_g$. Concretely, we get straight away that the state $|\Phi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$ is left unchanged by any $U_g \otimes U_g$ where $U_g \in SU(2)$. This is pretty cool, right? And would not have been obvious without group theory. Similarly, any state that lives in the span $\{|11\rangle, |01\rangle + |10\rangle, |00\rangle\}$ will remain in that subspace.

More formally, using the notation $\text{Sym}^2(\mathbb{C}^2)$ for the symmetric subspace and $\text{Alt}^2(\mathbb{C}^2)$ for the antisymmetric subspace, we can write the composite vector space as $V = \text{Sym}^2(\mathbb{C}^2) \oplus \text{Alt}^2(\mathbb{C}^2)$ and it is possible to construct representations that act on these spaces separately. Concretely, it can be built from the direct sum of $SU(1)$ (i.e. just the 1 by 1 identity matrix) on the subspace $\text{Alt}^2(\mathbb{C}^2)$ and $SU(3)$ on the $\text{Sym}^2(\mathbb{C}^2)$ subspace. Note also, that due to the block structure of $U_g \otimes U_g$ a state in the subspace $\text{Sym}^2(\mathbb{C}^2)$ remains in the subspace spanned by $\text{Sym}^2(\mathbb{C}^2)$ (and similarly for $\text{Alt}^2(\mathbb{C}^2)$). Again, if this feels a bit abstract - check it numerically!

It is important to stress that it is not always possible to reduce a representation into a direct sum of representations. Or, equivalently, a representation will not always have an invariant subspace. For a simple example of such an *irreducible* representation consider the fundamental representation of $SU(2)$. This is simply the continuous set of all single qubit unitaries. Clearly there is no single basis in which such matrices are all diagonal. Or, equivalently, there is no way to split the vector space into disjoint subspaces where any vector in that space remains in that space under any arbitrary single qubit unitary. Similarly, the representation

¹¹Note the similarity with our discussion in Eq. (9.3)- the calculation was exactly the same but there we used it to argue that symmetries indicated degeneracies. We will come back to this perspective again in a bit when we see that the dimension of irreducible representations indicates the number of degenerate eigenstates. This probably won't make much sense now if you're reading these notes through for the first time, but hopefully this is helpful if reading back through.

¹²The subspace spanned by $\{|11\rangle, |01\rangle + |10\rangle, |00\rangle\}$ is alternatively spanned by the Bell states $\{|\Phi^+\rangle, |\Phi^-\rangle, |\Psi^+\rangle\}$.

¹³*Exercise:* If you're not yet fully convinced, check this numerically. It's quite cool to see it work in practise. I've uploaded a mathematica file to the moodle where I run through it. You can get a free mathematica licence from EPFL. That said, you could also quickly check this in python / whatever your favourite language is.

$SU(2)$ on $\text{Sym}^2(\mathbb{C}^2)$ and $\text{Alt}^2(\mathbb{C}^2)$ cannot be further reduced (e.g. there is no subspace within $\{|11\rangle, |01\rangle+|10\rangle, |00\rangle, |10\rangle-|01\rangle\}$ that remains invariant under any unitary $U \otimes U$ with $U \in SU(2)$).

Before we move on to discussing when representations are and are not reducible let me just highlight that there is lots of physics in the simple example of decomposing $SU(2) \otimes SU(2)$ into a direct sum. And this physics hopefully gives you a sense of why reducing representations is physically interesting.

Link with identical particles. Firstly, thinking back to when we studied identical particles, you should recognise the symmetric and anti-symmetric subspaces found above as corresponding to Bosons and Fermions respectively. Thus these observations could be seen as another way of showing¹⁴ that there are two types of fundamental particles that we cannot transform between.

Link with addition of angular momentum/Clebsch-Gordan coefficients. The two blocks found above also correspond to the spin 1 and spin 0 blocks obtained when adding the momentum of two spin half particles. That is, we have three spin 1 states:

$$|s = 1, m = 1\rangle = |11\rangle \quad (9.26)$$

$$|s = 1, m = 0\rangle = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) \quad (9.27)$$

$$|s = 1, m = -1\rangle = |00\rangle \quad (9.28)$$

and one spin 0 state:

$$|s = 0, m = 0\rangle = \frac{1}{\sqrt{2}}(|10\rangle - |01\rangle). \quad (9.29)$$

Here the left hand side of the equations denotes the state corresponding to the total spin $s = s_1 + s_2$ of two spin 1/2 particles ($s_1 = 1/2$, $s_2 = 1/2$) and total spin m orientated in the z direction. On the right hand side of the equations we denote the spin orientation of the two particles, e.g. $|10\rangle$ corresponds to one spin aligned spin up with z and the other spin pointing down in the z direction. These equations, read right to left, can be viewed as representing a change in basis from a basis where we list the individual orientations of the spins to the resulting total spin and orientation of the combined spins. Thus we see that the decomposition of a tensor product representation into a direct sum of representation has a deep link with how to add the angular momentum of composite systems. We'll come back to this in a lot more detail in a couple of weeks times.

9.4.2 Definitions of (Ir)Reducibility.

Hopefully that example gave you some hint of what we mean by *reducing* representation into a direct sum of representations. Hopefully it also gave you a hint as to why it is physically interesting. I appreciate right now it might seem like an overkill and all we have done is rephrase ideas from quantum physics 1 in a group theoretic language. However, in more complex scenarios we will start only with the symmetry properties and be faced with the challenge of trying to identify the relevant subspaces. This is when group and representation theory really becomes useful.

¹⁴Technically we just consider the rather trivial $U \otimes U$ evolutions here but the more general set of evolutions that commute with SWAP could similarly be diagonalized in the symmetric and anti-symmetric subspaces.

Let's define the concepts of reducible and irreducible representations a little more formally.

Definition 9.4.2 (Reducible representation). A representation $R(g)$ of a group G over a vector space V is reducible if there exists an invariant subspace. That is, if there exists a non-trivial (i.e. not just V or $\mathbf{0}$) subspace W of V such that $\forall |w\rangle \in W$, we have $R(g)|w\rangle \in W$, for any element $g \in G$.

In plain words: an invariant subspace means a smaller space than the actual space V , where the application of any matrix in the representation does not leave the space. In terms of matrices, this means that there is an equivalent representation that can be written as a block matrix with a zero block:

$$R(g) = \begin{pmatrix} Q(g) & 0 \\ T(g) & P(g) \end{pmatrix} \quad (9.30)$$

In fact if we write all vectors in V as $|x\rangle = \begin{pmatrix} v \\ w \end{pmatrix}$, we see that the subspace defined by vectors $|w\rangle = \begin{pmatrix} 0 \\ w \end{pmatrix}$ is transformed as

$$R(g)|w\rangle = \begin{pmatrix} 0 \\ P(g)w \end{pmatrix} \quad (9.31)$$

so that such vectors never leave the subspace. If a representation is reducible, then there is a basis such that all matrices can be written as such block matrices in the basis.

Definition 9.4.3 (Irreducible representation). An irreducible representation is a representation that is not reducible.

Obviously, representations that live in dimension 1 are irreducible. One of the main uses of group theory in quantum mechanics is to *reduce* representations into a set of irreducible ones.

A particular case of reducibility is *complete reducibility*, in which case $T(g) = 0$ as well.

Definition 9.4.4 (Completely Reducible representation). A representation $R(g)$ of a group G is completely reducible if it splits into a direct sum of irreducible representations

$$R(g) = \begin{pmatrix} R_1(g) & 0 & \dots & 0 \\ 0 & R_2(g) & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & R_k(g) \end{pmatrix} = \bigoplus_i R_i(g). \quad (9.32)$$

We may wonder if all reducible transformations are completely reducible. Sadly, this is not the case. Here is an example: the matrices

$$M(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \quad (9.33)$$

are a representation of the group $\mathbb{R}, +$. Indeed, $M(x)M(y) = M(x + y)$. However, we cannot diagonalize such matrices.

The good news, however, is that in this lecture we will limit ourselves to *unitary representations* which if they are reducible are always completely reducible¹⁵.

¹⁵To see this note that since unitary transformation send orthogonal states to orthogonal states $T(g)$ must be zero in equation (9.30).

Much of the rest of this chapter will be centred around developing the tools to find and use irreducible representations. More precisely, we are going to do two things: i) Study the consequences of having an irreducible representation, and ii) See how to get an irreducible representation. Irreducible representations are often called ‘irreps’ for short.

A word of warning, the next few sections will get pretty technical. This is unavoidable. If you are ever lost, try and construct yourself some examples of the statements being made. To avoid getting too bogged down in technicalities many of the longer proofs will be left to appendices/references. These proofs are non-examinable - but you may find working through them helpful for your understanding.

9.5 Schur’s Lemmas

A key result to help identify irreps is Schur’s lemma. This discusses the link between irreducible representations, and in particular their link with an operator that commutes with all elements of the representation.

Schur’s first lemma gives us a criterion to determine when two representations are reducible.

Lemme 9.5.1 (Schur’s First Lemma¹⁶). *Let $R_1(g)$ and $R_2(g)$ be two non-equivalent irreducible representations of a group G , each acting on vector spaces V_1 and V_2 . If there is a matrix A is such that*

$$AR_1(g) = R_2(g)A \quad \forall g \in G \quad (9.34)$$

then $A = 0$.

Or, turning it around, if you can find an A that satisfies Eq. (9.34) such that $A \neq 0$ then you representations R_1 and R_2 are reducible. This therefore gives you one way of detecting that a representation is reducible.

The second lemma studies what kind of matrices commute with all matrices of a given irreducible representation.

Lemme 9.5.2 (Schur’s Second Lemma¹⁷). *Let R be an irreducible unitary representation¹⁸ of a group G . If*

$$AR(g) = R(g)A \quad \forall g \in G,$$

then $A = \lambda I$ for some $\lambda \in \mathbb{C}$.

I quite like the explanation of Schur’s second lemma in Group Theory In A Nutshell For Physicists so I’ll quote from it directly: *If I give you a bunch of matrices R_1, R_2, \dots, R_n , the identity matrix I commutes with all these matrices, of course. But it is also quite possible for you to find a matrix A , not the identity, that commutes with all n matrices. The theorem says that you can’t do this if the given matrices D_1, D_2, \dots, D_n are not any old bunch of matrices you found*

¹⁶The proof here isn’t too bad.

¹⁷For a nice proof of this check out Group theory in a nutshell for physicists.

¹⁸For those of you for which these details are important (and/or those who have been confused how Schur’s lemma is stated differently in different books/references) the statement and proof of Schur’s Second Lemma can differ slightly depending on whether you are looking at finite or infinite dimensional representations. However, we will not worry about these subtleties in this course. It holds in the form stated here for finite or compact unitary representations (i.e. all representations we will be interested in for this course).

hanging around the street corner, but the much-honored representation matrices furnishing an irreducible representation of a group.

In short, if there exists an operator A that commutes with all elements of two *irreducible* representations then Schur lemmas gives a very strong limit to what A can be: either a trivial diagonal matrix, if the representations are equivalent (i.e., the same up to a change of basis), or a zero one, if they are not. Or, turning it around, no operator - except the trivial zero operator - commutes with all elements of two non-equivalent irreducible representations. So if you find a non-trivial operator that does commute then the representations are reducible.

Example. To make this less abstract let's first consider our favourite example of $SU(2) \otimes SU(2)$. We know that its irreps are $SU(1)$ on the anti-symmetric subspace $\text{Alt}^2(\mathbb{C}^2)$ and $SU(3)$ on the symmetric subspace $\text{Sym}^2(\mathbb{C}^2)$. It follows from Schur's Second Lemma that the only operators that commute with $SU_3(g)$ for all g is a scalar multiplication of I on this subspace, i.e. $I = |\Psi^+\rangle\langle\Psi^+| + |\Phi^-\rangle\langle\Phi^-| + |\Phi^+\rangle\langle\Phi^+|$. And this is, of course, indeed the case.

As another example of how to apply Schur's lemma let us consider the $R(e) = I$ and $R(a) = X$ representation of Z_2 group. The $A = X \neq I$ operator commutes with both I and X and so we know immediately that $R(e) = I$ and $R(a) = X$ is not an irrep. Note, that this is a consequence of the Z_2 group being Abelian. More generally, from Schur's lemma, we can deduce something very important:

Theorem 9.5.3 (Representation of Abelian groups). *All irreducible representations of Abelian groups are scalar.*

Demo. Let $R(g)$ be an irreducible representation of an Abelian group G . Then we have, $\forall g, h \in G$, $R(g)R(h) = R(g * h) = R(h * g) = R(h)R(g)$. Since $R(h)$ commutes with all $R(g)$, then from the second Schur lemma, it must be a matrix $I\lambda$, and $R(h) = I\lambda(h)$ for all h . Since it is also irreducible, then $R(h) = \lambda(h)$ (i.e. $= I\lambda$ clearly has invariant subspaces for $\dim(I) \geq 2$). \square

More generally, given a bunch of matrices, there are potentially many matrices that commute with all of them. However, if the matrices form an irreducible representation of a finite group only multiples of the identity matrix commute with them. In general, we will be interested in problems where the Hamiltonian commutes with a given symmetry of a system (and so are block diagonal in the same basis). This means that if we can identify the systems irreps we can block diagonalize the Hamiltonian. Let's go through this argument more carefully.

9.6 Irreps are all about Block Diagonalization!

In a quantum context one often considers the Hamiltonian H , and G a symmetry group that commutes with H . More precisely, suppose we have a representation of a symmetry group over a Hilbert space \mathcal{H} with $[R(g), H] = 0 \forall g \in G$. For example, \mathcal{H} could be an infinite dimensional space, that forms a basis (for instance the Fourier basis). In an infinite dimensional space, we expect that $R(g)$ is reducible. So, if we work hard, we can find a basis of the Hilbert space that reduces the representation, that is we can recompose the space as $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \dots$ where all the \mathcal{H}_i are invariant over the group transformation. At this point, we thus have $\forall g \in G, R(g) = R_1(g) \oplus R_2(g) \oplus R_3(g) \dots$ where each of the R_i are irreps, or equivalently in

Figure 9.4:

matrix form:

$$R(g) = \begin{pmatrix} R_1(g) & 0 & 0 & \dots \\ 0 & R_2(g) & 0 & \dots \\ 0 & 0 & R_3(g) & \dots \\ \dots & & & \end{pmatrix}. \quad (9.35)$$

In this basis, we write the Hamiltonian (which is of course Hermitian) as

$$H = \begin{pmatrix} H_{11} & H_{12} & H_{13} & \dots \\ H_{21} & H_{22} & H_{23} & \dots \\ H_{31} & H_{32} & H_{33} & \dots \\ \dots & & & \end{pmatrix} = \begin{pmatrix} H_{11} & H_{12} & H_{13} & \dots \\ H_{12}^* & H_{22} & H_{23} & \dots \\ H_{13}^* & H_{23}^* & H_{33} & \dots \\ \dots & & & \end{pmatrix} \quad (9.36)$$

Now, let us see what Schur's lemma tells us. If $[R(g), H] = 0 \forall g \in G$ then we can apply the Schur lemma between all blocks in this decomposition. Writing out the matrices explicitly, and using $R(g)H = HR(g)$, we see that on the diagonal we have

$$H_{kk}R_k = R_kH_{kk} \quad (9.37)$$

for all k and so by Schur's second lemma along the diagonal we have $\lambda_k I$. Then on the off-diagonal we have terms of the form

$$H_{jk}R_k = R_jH_{jk}. \quad (9.38)$$

If R_k and R_j are non-equivalent then, from Schur's first lemma, the block $H_{jk} = 0$. If R_k and R_j are equivalent then the block H_{jk} can be non-zero. That is, assuming only R_1 and R_2 are equivalent, the Hamiltonian can be written as

$$H = \begin{pmatrix} \lambda_1 I & H_{12} & 0 & 0 & \dots \\ H_{21} & \lambda_2 I & 0 & \dots & \dots \\ 0 & 0 & \lambda_3 I & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \dots & & & & \end{pmatrix} \quad (9.39)$$

This allows us to considerably simplify the Hamiltonian just from the role of symmetry. In fact, if all the representations are non-equivalent then all the off diagonal terms will have vanished and we have block diagonalized the Hamiltonian - i.e. we know the degenerate eigenspaces of the Hamiltonian! This then makes finding the eigenvalues/eigenvectors of a Hamiltonian much easier as we can just find the eigenvalues/vectors of the individual blocks (which are smaller and so easier to handle!) rather than work with the large composite Hamiltonian.

Note, that if all the representations are non-equivalent then we can immediately read off the degeneracy of each of each of the eigenvalues- it's just given by the dimension of the irreps! Thus, as promised at the end of the warm up at the start of the group theory lectures, e.g. after Eq. (9.3), group and rep theory allows us to not only better understand but also explicitly compute the number of degenerate eigenvalues a Hamiltonian has.

Or, turning it around, given experimental information on the degeneracy, we can use this information to try and identify the relevant symmetry group. In particular, G has to have at least one d -dimensional irreducible representation.

In summary, in quantum mechanics:

$$\begin{array}{c} \hline G \implies \text{degeneracy} \quad \text{and} \quad G \iff \text{degeneracy} \\ \hline d = \text{degrees of degeneracy} = \text{dimension of irreducible representation} \end{array}$$

Example 1: Indistinguishable particles. Lets suppose we are interested in studying a Hamiltonian H of two indistinguishable particles. The relevant symmetry group in this case is the permutation group for two objects, $S_2 = \{e, p\}$ with the cayley table:

$$\begin{array}{c|cc} & e & p \\ \hline e & e & p \\ p & p & e \end{array}.$$

Let's say our two particles are two qubits (because qubits are nice and simple). Then a representation of this group is $R(e) = I$, $R(p) = \text{SWAP}_{12}$ where $\text{SWAP}_{12}|00\rangle = |00\rangle$, $\text{SWAP}_{12}|01\rangle = |10\rangle$, $\text{SWAP}_{12}|10\rangle = |01\rangle$, and $\text{SWAP}_{12}|11\rangle = |11\rangle$, or in matrix form

$$\text{SWAP}_{12} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \quad (9.40)$$

We know immediately that this representation has to be reducible because S_2 is an Abelian group and the irreps of an Abelian group are 1D. The irreps of S_2 are clearly the trivial irrep $R_1(e) = 1$, $R_1(p) = 1$ and $R_2(e) = 1$, $R_2(p) = -1$. So how do we write the $R(e) = I$, $R(p) = \text{SWAP}_{12}$ representation in terms of these? We we've already seen this today! The SWAP operator is diagonal in the Bell basis with eigenvalues +1 and -1. That is, in the Bell basis we can write

$$\text{SWAP}_{12} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}. \quad (9.41)$$

Thus we have:

$$R(e) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_1(e) & 0 & 0 & 0 \\ 0 & R_1(e) & 0 & 0 \\ 0 & 0 & R_1(e) & 0 \\ 0 & 0 & 0 & R_2(e) \end{pmatrix} \quad (9.42)$$

and

$$R(p) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} R_1(p) & 0 & 0 & 0 \\ 0 & R_1(p) & 0 & 0 \\ 0 & 0 & R_1(p) & 0 \\ 0 & 0 & 0 & R_2(p) \end{pmatrix} \quad (9.43)$$

Or, more compactly, $R(g) = R_1(g) \oplus R_1(g) \oplus R_1(g) \oplus R_2(g)$. We have successfully broken down our representation down into irreps!

Ok, so now we've figured out the irreps of the relevant symmetry group and representation for our particular system, what can we say about the Hamiltonian of the system. Well we know that H commutes with all representations of the symmetry group - this is by assumption - this is what it means for a physical system to have a given symmetry. Thus we have $[H, \text{SWAP}_{12}] = 0$. If we now apply Schur's lemma we know that the Hamiltonian must be block diagonalisable in the Bell basis. That is, it has to be of the form:

$$H \left(\begin{array}{ccc|c} & & & 0 \\ & & & 0 \\ & & & 0 \\ \hline 0 & 0 & 0 & \end{array} \right) \quad (9.44)$$

where \square indicates the blocks to be filled in with the appropriate matrix elements.

As often with these examples, the application of group theory here right now might feel like overkill. Of course we always knew that if H commuted with SWAP it had to be block-diagonalizable in the same basis. But isn't it nice to see that these rather abstract looking theorems (Schur's lemma's) lead to the same conclusions. Or, at least, I would rather you be bored reading this thinking it all makes sense and is trivial than be completely lost. I warn you, the next example is also pretty trivial. However, example 3 on Bloch's theorem (which will be covered in more detail in the problem sheet) is where things start to get more interesting.

Example 2: Parity. A parity transformation (also called parity inversion) is the flip in the sign of a spatial coordinate. In three dimensions, it refers to the simultaneous flip in the sign of

all three spatial coordinates (a point reflection): $\mathbf{P} : \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}$. A wave function can always

be decomposed into an even and an odd component $\psi(\mathbf{x}) = \psi^+(\mathbf{x}) + \psi^-(\mathbf{x})$, and the application of the parity operator transforms it as

$$\mathbf{P}\psi(\mathbf{x}) = \mathbf{P}\psi^+(\mathbf{x}) + \mathbf{P}\psi^-(\mathbf{x}) = \psi^+(-\mathbf{x}) + \psi^-(-\mathbf{x}) = \psi^+(\mathbf{x}) - \psi^-(\mathbf{x}) \quad (9.45)$$

Note in particular that $\mathbf{P}\mathbf{P} = 1$. The set of all parity transformations that can be obtained by the parity operator is thus limited to 2. The set of these transformations forms the parity group $Z_2 = \{e, p\}$ which is the same as the permutation group on two objects (i.e, the same group we were just looking at). So we recall again that this group has only two possible irreducible representations in dimension 1 on \mathbb{R} : (i) $R_1(e) = 1$ and $R(p) = 1$ and (ii) $R_2(e) = 1, R_2(p) = -1$.

Consider now a problem with a Hamiltonian that commutes with any parity transformation. This will be the case for any particle with a potential such that $V(x) = V(-x)$. The Hamiltonian lives in a large (possibly infinite) Hilbert space \mathcal{H} . Now, we consider a basis of \mathcal{H} made of even and odd functions (such as the Fourier basis): $\{\phi_1^+(x), \phi_2^+(x), \dots, \phi_1^-(x), \phi_2^-(x), \dots\}$.

This basis defines invariant subspaces with respect to parity, i.e. for any possible representation R of the parity group, an even (odd) basis function stays even (odd) under any application of

$R(e)$ or $R(p)$. We can write $R(e)$ and $R(p)$ in this basis as

$$R(e) = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \dots & & & & \end{pmatrix} \text{ and } R(p) = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ \dots & \dots & -1 & 0 & 0 \\ \dots & \dots & 0 & -1 & 0 \\ \dots & & & & \end{pmatrix}$$

where in $R(p)$ the rows/columns with $+1$ correspond to even basis states and the rows/columns with -1 correspond to the odd basis states. That is, we have

$$R(g) = \begin{pmatrix} R_1(g) & 0 & 0 & 0 & \dots \\ 0 & R_1(g) & 0 & 0 & \dots \\ \dots & 0 & R_2(g) & 0 & \dots \\ 0 & 0 & 0 & R_2(g) & \dots \\ \dots & & & & \end{pmatrix}. \quad (9.46)$$

Applying the Schur lemmas, and noting that $R_1(g)$ and $R_2(g)$ are non-equivalent irreps, we now obtain that

$$H = \begin{pmatrix} H_{11} & 0 \\ 0 & H_{22} \end{pmatrix}. \quad (9.47)$$

It follows that the eigenfunctions of a Hamiltonian that commutes with the parity operator are either odd or even. That is, they have well defined parity. You of course already knew this - but hopefully it is nice to see that this can arise from your new found understanding of irreps.

Example 3: Bloch's Theorem. Let's now consider the case of a particle moving in 1D in a periodic potential $V(x)$. That is under the Hamiltonian

$$H = \frac{p^2}{2m} + V(x) \quad \text{where} \quad V(x+a) = V(x). \quad (9.48)$$

We will suppose that the particle moves on a 1-dimensional lattice consisting of N sites and periodic boundary conditions.

What is the symmetry in group in this case? Well the Hamiltonian is left unchanged by any translation U_a by a distance a , i.e., $x \rightarrow Ux = x+a$. It follows, that the symmetry group consists of $\{I, U_a, U_a^2, \dots, U_a^{N-1}\}$. Note that given the periodic boundary conditions we have that $U_a^N = I$. Thus the symmetry group is just the familiar cyclic group \mathbb{Z}_N . In the problem sheet, you'll then use your understanding of the irreps of \mathbb{Z}_N to determine the form of the eigenfunctions of H .

9.7 How many irreducible representations does a group have?

Let us start by presenting two theorems that can be used to deduce the number of irreps that a group has.

Lemme 9.7.1. Burnside lemma: *For a finite group of order h , there are only a finite number n of irreducible representations $a = 1, \dots, n$ of dimension l_a , and*

$$\sum_{a=1}^n l_a^2 = h \quad (9.49)$$

For example, the group \mathbb{Z}_2 is order 2 (i.e. contains two elements). Its irreducible representations are the trivial representation, $e \rightarrow 1$ and $a \rightarrow 1$, and the sign representation, $e \rightarrow 1$ and $a \rightarrow -1$. And this satisfies the Burnside lemma as $1^2 + 1^2 = 2$. (For a proof of this Theorem see Appendix 9.10.9).

Lemme 9.7.2. *Number of Irreducible Representations: For a finite group of order h , the number of (non-equivalent) irreps is equal to the number of **conjugacy classes**:*

$$N_r = N_c. \quad (9.50)$$

To understand this second theorem, which we will prove in Section 9.8, we will need to introduce the concept of a *conjugacy class*.

9.7.1 Equivalence relations and conjugacy classes.

I thought equivalence/conjugacy classes were really nicely explained in ‘group theory in a nut shell for physicists’ so I’m going to quote directly from there here:

“Given a group G , distinct group elements are of course not the same, but there is a sense that some group elements might be essentially the same. The notion of equivalence class makes this hunch precise.

Before giving a formal definition, let me provide some intuitive feel for what “essentially the same” might mean. Consider $SO(3)$. We feel that a rotation through 17° and a rotation through 71° are in no way essentially the same, but that, in contrast, a rotation through 17° around the z -axis and a rotation through 17° around the x -axis are essentially the same. We could simply call the x -axis the z -axis.

As another example, consider S_3 . We feel that the elements (123) and (132) are equivalent, since they offer essentially the same deal; again, we simply interchange the names of object 2 and object 3. We could translate the words into equations as follows:

$$(23)^{-1}(123)(23) = (32)(12)(23)(32) = (32)(21) = (321) = (132) \quad (9.51)$$

A transformation using (23) has turned (123) and (132) into each other, as expected. Similarly, you would think that (12) , (23) , and (31) are essentially the same, but that they are in no way essentially the same as (123) .

In a group G , two elements g and g' are said to be equivalent ($g \sim g'$) if there exists another element f such that

$$g' = f^{-1}gf$$

The transformation $g \rightarrow g'$ is like a similarity transformation in linear algebra.”

Thus the equivalence relation divides the elements of group G into distinct classes which are called conjugate classes or simply classes.

Let us consider for example the order 4 cyclic group:

$$G = \begin{array}{c|cccc} * & e & a & b & c \\ \hline e & e & a & b & c \\ a & a & e & c & b \\ b & b & c & e & a \\ c & c & b & a & e \end{array} \quad (9.52)$$

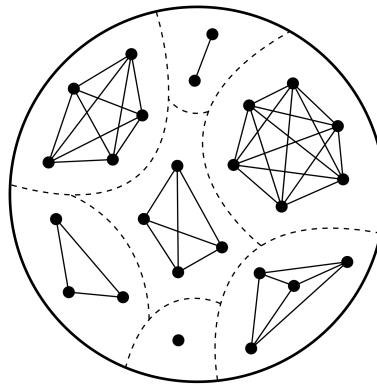


Figure 9.5: Graph of an example equivalence with 7 classes (from Wiki page on equivalence classes).) Each edge represents \sim (with edges from any node to itself not shown).

In this case, can check that we have four conjugacy classes, each containing one member. (But, for example, $\{a, b\}$ is not an equivalence class because there is no $u \in \{a, b\}$ such that $uau^{-1} = b$.)

In fact, this is true for each Abelian group (and the converse is true). An Abelian group of order n has n conjugacy classes. This is a trivial consequence of commutation (i.e. $uau^{-1} = uu^{-1}a = a = b$!). Looking back at Lemma 9.7.2 this then implies that an order n Abelian group has n irreps (irreducible representations). (Note, you could also have seen this from the fact that the irreps of Abelian groups are 1D and the Burnside Lemma).

A more interesting example is given by the S_3 (i.e., the $C3v$ group). Here we have three conjugacy classes: $\{e\}$, $\{c_+ = (123), c_- = (132)\}$, and the three mirrors $\{\sigma = (12), \sigma' = (23), \sigma'' = (32)\}$. Note that e is always a "isolated" class in itself. Indeed, if $x = u^{-1}eu$ then $x = e$. We then already showed that (123) and (132) were equivalent in Eq. (9.51). I'll leave it as an exercise for you to convince yourself that $\sigma = (12), \sigma' = (23), \sigma'' = (32)$ are equivalent. (If you're stuck check out this video). Looking back at Lemma 9.7.2 this tells us that $C3v$ has 3 irreps.

So we now have a way of counting how many irreps we have. This can be useful because if we are trying to find all irreducible representations of a group because it gives us a way of knowing how many we are missing. Then Burnside's Lemma gives us a way of guessing the dimensions of the missing representations. But this is only so useful. Really we want to know how to identify some of the irreps.

9.8 Orthogonality theorems

We have just seen that if we know a systems irreps we can use them to block diagonalize a Hamiltonian. But we still don't have all the theoretical tools we need to identify irreps in the first place. We will set some of these out in this subsection.

9.8.1 Grand Orthogonality Theorem

We are now in a position to state the grand orthogonality theorem. Similarly to how the orthogonality of eigenstates of a Hermitian operator allows you to find a single eigenstate and then identify other eigenstates by construction, we will see that this theorem allows us to take one irrep and identify others by this orthogonality constraint.

We can think of irreducible representations as giving "vectors of matrices" $([R(g)]_{ij})_{g \in G}$ in a vector space of dimension $|G|$. The Grand Orthogonality Theorem provides orthogonality relations between these vectors. Let me start by stating the theorem in its full glory:

Theorem 9.8.1 (Grand Orthogonality Theorem). *Let R_a and R_b be two non-equivalent unitary irreducible representations of a finite¹⁹ group G of order N . Let n_a and n_b be the dimensions of the vector space for R_a and R_b . Then the grand orthogonality theorem states that*

$$\sum_{g \in G} \frac{n_a}{N} [R_a(g)^\dagger]_{jk} [R_b(g)]_{lm} = \delta_{ab} \delta_{jm} \delta_{lk} \quad (9.53)$$

The grand orthogonality theorem is a consequence of Schur's lemma, for a derivation see Appendix 9.10.8.

Now let me try and unpick it a little for you. Let's first consider the case of two non-equivalent irreps (i.e, $a \neq b$). Then the grand orthogonality theorem implies that the vectors of matrices corresponding to any two non-equivalent irreps are orthogonal²⁰. In particular, we have

$$\sum_{g \in G} [R_a(g)^\dagger]_{jk} [R_b(g)]_{lm} = 0, \forall a \neq b, \forall i, j, k, l. \quad (9.54)$$

Next let's consider the case where $a = b$ so that we're just looking at the properties of a single irrep. In this case we firstly have an orthogonality relation between the elements of the irreps

$$\sum_{g \in G} [R_a(g)^\dagger]_{jk} [R_a(g)]_{lm} = 0 \text{ if } j \neq m \text{ and/or } l \neq k. \quad (9.55)$$

Finally, the grand orthogonality theorem provides a normalisation condition for these vectors in the case where $j = m$ and $l = k$. Concretely, we have

$$\sum_{g \in G} [R_a(g)^\dagger]_{kj} [R_a(g)]_{kj} = \frac{N}{n_a}. \quad (9.56)$$

where N is the order of group G and n_a is the dimension of the vector space of representation R_a .

¹⁹The theorem can also be generalized to compact Lie groups.

²⁰Note, that in fact the condition the Grand Orthogonality Theorem imposes is stronger than simply the orthogonality of these vectors. That would be the claim that $\sum_g R_a(g)^\dagger R_b(g) = 0$ which is equivalent to $\sum_g \sum_j [R_a(g)^\dagger]_{ij} [R_b(g)]_{jk} = 0$ for all i and k . This is implied by Eq.(9.54) but Eq.(9.54) is stronger.

Examples. As ever, let us try and make this a little less abstract by considering some examples. Let us start with the Z_2 group. It is Abelian so its irreps are one-dimensional. Specifically, we have:

$$R_1(e) = 1, R_1(a) = 1 \quad (9.57)$$

$$R_2(e) = 1, R_2(a) = -1. \quad (9.58)$$

As these are one-dimensional irreps we can drop the subscripts j, k, l, m in Eq. (9.54) and have:

$$\sum_g R_1(g)^\dagger R_2(g) = R_1(e)^\dagger R_2(e) + R_1(a)^\dagger R_2(a) = 1 \times 1 + 1 \times (-1) = 0 \quad (9.59)$$

in agreement with Eq. (9.54). Similarly,

$$\begin{aligned} \sum_g R_1(g)^\dagger R_1(g) &= 1 \times 1 + 1 \times 1 = 2 \\ \sum_g R_2(g)^\dagger R_2(g) &= 1 \times 1 + -1 \times (-1) = 2. \end{aligned} \quad (9.60)$$

As the order of the group is 2 ($N = 2$) and the dimension of the irreps are 1 ($n_A = 1$) this agrees with Eq. (9.56).

As a less trivial example, let's consider C3v. Remember, this consisting of two rotations (clockwise and anti-clockwise) and three reflections (on each axis). A possible irreducible representation²¹ are the following six real matrices:

$$\begin{aligned} e &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ c_+ &= \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, c_- = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \\ \sigma &= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma' = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \sigma'' = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \end{aligned} \quad (9.61)$$

Let us consider an example of the normalisation condition first:

$$\sum_{g \in G} R(g)^\dagger R(g)_{11} = 1^2 + 1^2 + \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = 3 = \frac{6}{2}$$

which satisfies Eq. (9.56) as the order of the group is 6 ($N = 6$) and the dimension of the irrep is 2 ($n_A = 2$). Now let's demonstrate the orthogonality of the $(1, 1)$ and $(2, 2)$ elements:

$$\sum_{g \in G} R(g)^\dagger R(g)_{22} = 1^2 + (1)(-1) + \left(-\frac{1}{2}\right) \frac{1}{2} + \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right) \frac{1}{2} = 0.$$

It is straightforward to verify the orthogonality of the other elements.

A direct consequence of the grand orthogonality theorem is that

Proposition 9.8.2. *A finite group can only have a finite number of inequivalent irreducible representations. Specifically, the maximum number of possible irreps is given by the order of the group.*

²¹We will discuss how to check that this is indeed an irrep and discuss other irreps of C3v in Section 9.9.1

This is clear from the orthogonality theorem. Thinking of irreducible representations as giving "vectors of matrices" $([R(g)]_{ij})_{g \in G}$ in a vector space of dimension $|G|$, the theorem tells us that those vectors must be orthogonal. But there are at most $|G|$ orthogonal vectors in a vector space of dimension $|G|$, and so the number of irreducible representations must be finite. In fact, we will calculate the number of irreducible representations for any finite group explicitly when we introduce characters.

9.8.2 Group averaging (twirling)

You may have noticed that the grand orthogonality theorem looks a lot like an average of an object under the adjoint action of the group. To see this consider the quantity:

$$\langle X \rangle_G := \frac{1}{N} \sum_g R(g) X R(g)^\dagger. \quad (9.62)$$

For example, if $R(g) = U_g$ is a unitary representation then this is just the average output of X after being evolved by each unitary U_g in the group,

$$\langle X \rangle_G := \frac{1}{N} \sum_g U_g X U_g^\dagger. \quad (9.63)$$

If this representation is irreducible then we can apply the grand orthogonality theorem to get the following **Irrep Group Averaging Corollary**:

$$\begin{aligned} \langle X \rangle_G &= \frac{1}{N} \sum_{jklm} \sum_g [R(g)]_{lm} X_{mj} [R(g)^\dagger]_{jk} |l\rangle \langle k| \\ &= \frac{1}{d} \sum_{jklm} \delta_{lk} \delta_{jm} X_{mj} |l\rangle \langle k| \\ &= \frac{1}{d} \sum_{jk} X_{jj} |k\rangle \langle k| \\ &= \frac{1}{d} \text{Tr}[X] I \end{aligned} \quad (9.64)$$

where $n_a = d$ is the dimension of the vector space of the representation.

Let's consider the group average of the single qubit Pauli group $G = \{\pm(i)\sigma_x, \pm(i)\sigma_y, \pm(i)\sigma_z, \pm(i)I\}$ over an arbitrary single qubit initial state ρ . This is an irreducible representation onto a $d = 2$ vector space and so from Eq. (9.64) we should have

$$\langle \rho \rangle_G = \frac{I}{2}. \quad (9.65)$$

That is, averaging the effect of applying each of the Paulis on a given state gives a maximally mixed state.

If it helps to make this less abstract and mysterious we can also compute $\langle \rho \rangle_G$ explicitly. To do so we first note that in each term of the form $U_g \rho U_g^\dagger$ the $+1, -1, +i, -i$ signs cancel out, i.e. $(i\sigma_z)\rho(-i\sigma_z) = \sigma_z \rho \sigma_z$, and so we can write

$$\langle \rho \rangle_G = \frac{1}{4} (\sigma_x \rho \sigma_x + \sigma_y \rho \sigma_y + \sigma_z \rho \sigma_z + I \rho I). \quad (9.66)$$

If we write the state in terms of its Bloch vector, $\rho = \frac{1}{2}(I + \mathbf{r} \cdot \boldsymbol{\sigma})$ and remember the properties of Pauli matrices (e.g. $\sigma_i \sigma_j \sigma_i = -\sigma_j$ for $i \neq j$ but $\sigma_j^3 = \sigma_j$) then we have

$$\langle \rho \rangle_G = \frac{1}{2} \left(I + \frac{1}{4} \left(\begin{pmatrix} r_x \\ -r_y \\ -r_z \end{pmatrix} + \begin{pmatrix} -r_x \\ r_y \\ -r_z \end{pmatrix} + \begin{pmatrix} -r_x \\ -r_y \\ r_z \end{pmatrix} + \begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix} \right) \cdot \boldsymbol{\sigma} \right) = \frac{1}{2} I, \quad (9.67)$$

in agreement with Eq. (9.65)

All this discussion of orthogonality theorems so far (i.e., both the grand orthogonality theorem and the group averaging corollary) has been framed for finite groups; however, it also carries over to compact (i.e. closed and bounded) Lie groups. And all the continuous groups we normally care about $U(n)$, $SU(n)$, $O(n)$, $SO(n)$ etc are compact. In this case the finite average sum $\frac{1}{N} \sum_g$ becomes a continuous integral over a uniform measure $\int d\mu(g)$. This uniform measure is called the Haar measure and the average is called Haar averaging - it's exact form and properties are beyond this course but I highly recommend this blog or this review. In any case, for continuous groups the average over irreducible representations is given by:

$$\langle X \rangle_G := \int_G d\mu(g) U_x(g) X U_x(g)^\dagger = \frac{1}{d} \text{Tr}[X] I. \quad (9.68)$$

The operator $\int_G d\mu(g) U_x(g) \dots U_x(g)^\dagger$ is sometimes called the *twirling* operation²².

For example, if you apply random unitaries to a single qubit state and then average the states you get out you will end up with the maximally mixed state. Note you effectively saw this in the decoherence problem sheet - but then I was nice and made the calculation simpler and had you just average over a mix of rotations around the σ_z and σ_x axes rather than arbitrary unitaries.

If you think back to the decoherence problem sheet you'll remember that if you only averaged over $R_z(\theta) = e^{-i\theta\sigma_z}$ rotations then you ended up not at the maximally mixed state but on projecting the state onto the Z axis. How can we understand this?

The first thing to note is that we cannot directly apply Eq. (9.68) because that only holds for irreps and $R_z(\theta) = e^{-i\theta\sigma_z}$ is not an irrep. To see this note that here we are considering $U(1)$ which is an Abelian group and so all its irreps are 1D. So we need a generalization of Eq. (9.68) for reducible representations.

Any reducible unitary representation can be written in the form

$$U(g) = \bigoplus_x U_x(g). \quad (9.69)$$

Let us consider a basis $\mathcal{B}_x = \{|x, i\rangle\}_{i=1}^{d_x}$ for each subspace x of dimension d_x . Therefore, $\bigcup_x \mathcal{B}_x$ is a basis for the full space (i.e. on which $U(g)$ acts) and we have

$$U(g) = \bigoplus_x U_x(g) = \sum_x \sum_{i,j=1}^{d_x} (U_x(g))_{i,j} |x, i\rangle \langle x, j|, \quad (9.70)$$

where $(U_x(g))_{i,j}$ is the component (i, j) of $U_x(g)$ with respect to the elements of \mathcal{B}_x i.e. $(U_x(g))_{i,j} = \langle x, i | U(g) | x, j \rangle$. Let us repeat the calculation in Eq. (9.64) but this consider a

²²In a quantum information context it is such standard terminology that I thought everyone called it this. However, apparently not... which lead to a few awkward conversations before I realised this.

reducible representation written as in Eq. (9.70). Again we'll do this calculation for a finite group but it generalises to continuous groups. Thus if we use the grand orthogonality theorem to repeat the calculation in Eq. (9.64) we find:

$$\begin{aligned}
 \langle X \rangle_G &= \frac{1}{N} \sum_g U(g) X U(g)^\dagger \\
 &= \frac{1}{N} \sum_g \sum_{x x'} \sum_{i,j=1}^{d_x} \sum_{k,l=1}^{d_{x'}} (U_x(g))_{i,j} \langle x, j | X | x', k \rangle (U_{x'}(g)^\dagger)_{k,l} | x, i \rangle \langle x', l | \\
 &= \sum_{x x'} \sum_{i,j=1}^{d_x} \sum_{k,l=1}^{d_{x'}} \langle x, j | X | x', k \rangle | x, i \rangle \langle x', l | \underbrace{\frac{1}{N} \sum_g (U_{x'}(g)^\dagger)_{k,l} (U_x(g))_{i,j}}_{=\frac{\delta_{x x'} \delta_{i l} \delta_{j k}}{d_{x'}}} \\
 &= \sum_x \frac{1}{d_x} \sum_{i,j=1}^{d_x} \langle x, j | X | x, j \rangle | x, i \rangle \langle x, i | \\
 &= \sum_x \frac{1}{d_x} \sum_{j=1}^{d_x} \langle x, j | X | x, j \rangle \Pi_x \\
 &= \sum_x \frac{\text{Tr}[\Pi_x X]}{d_x} \Pi_x \\
 &= \bigoplus_x \frac{\text{Tr}[\Pi_x X]}{d_x} I_x,
 \end{aligned} \tag{9.71}$$

where Π_x is the projector onto subspace x and I_x is the identity in this subspace ($\dim(I_x) = d_x$ and $\dim(\Pi_x) = \dim(X)$). The grand orthogonality theorem is used in the fourth equality, we perform the sum over i in the fifth inequality by introducing Π_x , then we recognise a trace over the projection on X onto subspace x (i.e. $\text{Tr}[\Pi_x X \Pi_x] = \text{Tr}[\Pi_x X]$ by cyclicity of the trace and as $\Pi_x^2 = \Pi_x$ for projector). (As a sanity check note that if we are actually looking at an irrep then we have $\Pi_x = I$ and $\text{Tr}_x = \text{Tr}$ and so Eq. (9.71) reduces to Eq. (9.64)). Again, while I have worked through this calculation for a finite group it also carries over to averaging over all the standard continuous groups we are interested in.

Ok so what happens when we average a state ρ by $R_z(\theta) = e^{-i\theta\sigma_z}$? Well the relevant group here is $U(1)$ and so the irreps in this case are both 1D ($\{1\}$ and $\{e^{-i\theta\theta}\}$) and we have:

$$U_g = \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\theta} \end{pmatrix} = |0\rangle\langle 0| + e^{-i\theta}|1\rangle\langle 1| \tag{9.72}$$

such that $\Pi_0 = |0\rangle\langle 0|$, $\Pi_1 = |1\rangle\langle 1|$ and $I_1, I_2 = 1$

$$\langle \rho \rangle_G = \bigoplus_{x=0,1} \text{Tr}[\rho \Pi_x] = \sum_{x=0,1} \text{Tr}[\rho \Pi_x] \Pi_x = \langle 0 | \rho | 0 \rangle | 0 \rangle \langle 0 | + \langle 1 | \rho | 1 \rangle | 1 \rangle \langle 1 |. \tag{9.73}$$

Thus as we expected (inline with Problem Sheet 5) this averaging kills off all coherence and projects onto the Z axis. For a visualisation of the effect of twirling on the Bloch sphere see Fig. 9.6.

Exercise: What happens if you twirl a qubit state over the group $SU(2) \otimes SU(2)$?

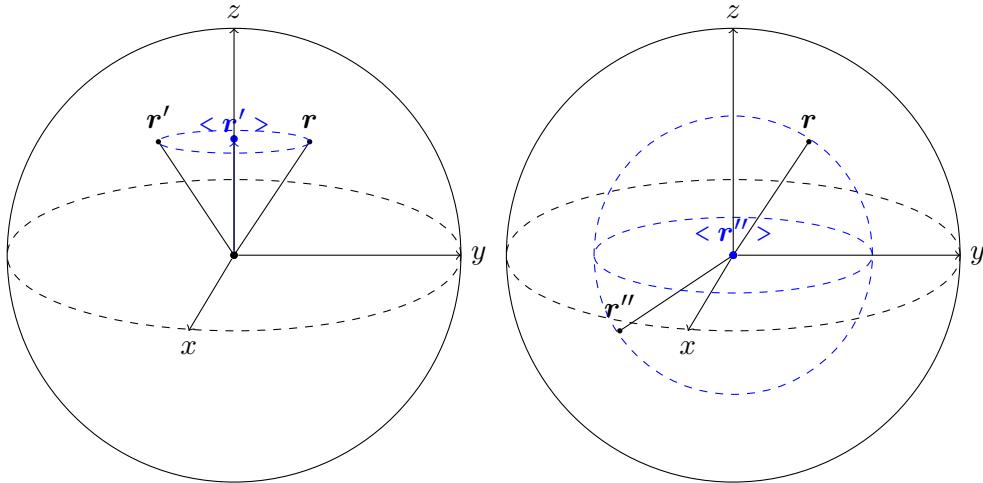


Figure 9.6: Left: We want the average of state $\rho = \frac{1}{2}(\mathbb{1} + \mathbf{r} \cdot \boldsymbol{\sigma})$ by $R_z(\theta)$ where $\mathbf{r} = (r_x, r_y, r_z)$. If we rotate ρ around the z-axis it goes to $\rho' = \frac{1}{2}(\mathbb{1} + \mathbf{r}' \cdot \boldsymbol{\sigma})$ where $\mathbf{r}' = (r'_x, r'_y, r_z)$. So if we calculate the average it would be a density matrix with a vector in the Block sphere equal to $(0, 0, r_z)$ which is along the z-axis. Right: And when we have all Pauli matrices, it will be an arbitrary rotation. So the state $\rho = \frac{1}{2}(\mathbb{1} + \mathbf{r} \cdot \boldsymbol{\sigma})$ rotates and goes to $\rho'' = \frac{1}{2}(\mathbb{1} + \mathbf{r}'' \cdot \boldsymbol{\sigma})$ where $\mathbf{r}'' = (r''_x, r''_y, r''_z)$ is another arbitrary vector. Then the average is a density matrix with vector zero in the Block sphere.

9.8.3 Petit Orthogonality Theorem.

We just saw that the grand orthogonality theorem is effectively an orthogonality relation between "vectors of matrices" $([R(g)]_{ij})_{g \in G}$. We will now consider the petite orthogonality theorem, its simpler corollary, which is an orthogonality relation between vectors composed of their traces $(\chi_R(g))_{g \in G}$ where we have defined

$$\chi_R(g) := \text{Tr}[R(g)]. \quad (9.74)$$

We further note that $\text{Tr}(R(x)^\dagger) = \chi_R^*(x)$.

Theorem 9.8.3 (Classes & Traces). *In a representation R , all the elements which are in the same conjugacy class have the same trace.*

Demo. If there exists u such that $x = u^{-1}yu$ then

$$\begin{aligned} \text{Tr}(R(x)) &= \text{Tr}(R(u^{-1}yu)) = \text{Tr}(R(u^{-1})R(y)R(u)) = \text{Tr}(R(u)R(u^{-1})R(y)) = \text{Tr}(R(e)R(y)) \\ &= \text{Tr}(R(y)) \end{aligned} \quad (9.75)$$

□

From the Grand Orthogonality Theorem, we find

$$\sum_{jk} \sum_{g \in G} \frac{n_a}{N} [R_a(g)^\dagger]_{jj} [R_b(g)]_{kk} = \sum_{g \in G} \frac{n_a}{N} \chi_a^*(g) \chi_b(g) = \delta_{ab} \sum_{jk} \delta_{jk} \delta_{jk} = n_a \delta_{ab} \quad (9.76)$$

where in the final line we use the fact that $\sum_{j,k=1}^{n_A} \delta_{jk} \delta_{jk} = \sum_{j,k=1}^{n_A} \delta_{jk} = n_a$. Thus we see that the vectors of traces of two irreps are orthogonal. Or more formally:

Figure 9.7: **Motivational cat.** Here's also a link to one of my favourite cat videos. It's an old one, and a slow burner (from an era pre-tiktok when videos could be more than 60 seconds).

Theorem 9.8.4 (Petit Orthogonality Theorem). *Let R_a and R_b denote two non-equivalent unitary irreducible representations of a finite group of order N , we have*

$$\sum_{g \in G} \chi_a^*(g) \chi_b(g) = N \delta_{a,b} \quad (9.77)$$

As elements in a conjugacy class have the same trace, one can equivalently write the petit orthogonality theorem by summing over the number of the conjugacy classes, i.e. we have

$$\sum_{\mu=1}^{N_c} n_\mu \chi_a^*(C_\mu) \chi_b(C_\mu) = N \delta_{a,b} \quad (9.78)$$

where n_μ denotes the number of elements in class μ and N_c is the total number of conjugacy classes.

For example, in the case of $C3v$ we have three equivalent classes: $\{e\}, \{c_+, c_-\}$, and the three mirrors $\{\sigma, \sigma', \sigma''\}$. We see in Eq. (9.61) that $\chi(e) = 2$, $\chi(c_+) = \chi(c_-) = -1$ and $\chi(\sigma) = \chi(\sigma') = \chi(\sigma'') = 0$. Thus, in line with Eq. (9.78), we have $1 \times 2^2 + 2 \times (-1)^2 + 3 \times 0^2 = 6$.

We stress that we can interpret this theorem as an orthogonality relation of N_r (the number of representations) vectors in a space of dimension N_c (the number of equivalent classes). Indeed, for any representation a we can define the (N_c -dimensional) vectors:

$$[|a\rangle]_\mu = \sqrt{\frac{n_\mu}{N}} \chi_a(C_\mu) \text{ for } \mu = 1, \dots, N_c. \quad (9.79)$$

There are N_r of these vectors for the N_r different irreps. It follows from Eq. (9.78) that this set of N_r vectors are all orthogonal. Since the maximum numbers of orthogonal vectors is N_c , we have

$$N_r \leq N_c. \quad (9.80)$$

That is, the number of representation is smaller or equal to the number of conjugation classes. This is the first step towards proving Lemma 9.7.2 (i.e. that the number of irreps is equal to the number of conjugacy classes) which we stated without proof earlier. It turns out this bound is tight (this is another consequence of the Grand Orthogonality Theorem - for a proof see Vincenzo Savona's notes on page 37) leading to Lemma 9.7.2.

9.9 Characters

We saw above that the traces of a representation of a group are useful. The set of traces associated with a representation are known as the *character* of the representation. Characters provide an elegant and systematic approach to analyzing and categorizing irreducible representations, as well as ascertaining the reducibility of a specific representation.

Definition 9.9.1 (Character). The set of all traces $\{\chi_R(g)\}$ is called the character of the representation R .

As we saw above, two equivalent representations have the same character. Indeed if $R_2(g) = SR_1(g)S^{-1}$, then using the cyclic property of the trace we have $\text{Tr}[R_2(g)] = \text{Tr}[SR_1(g)S^{-1}] = \text{Tr}[R_1(g)]$. In fact this is a sufficient condition as well:

Theorem 9.9.2 (Characters of Irreps). *Two irreps are equivalent if and only if they have the same character.*

Demo. We already proved that the condition is necessary. To prove it is sufficient we reason by contradiction. Assume two irreps R_1 and R_2 are not equivalent but have the same character. Then using the petit Orthogonality theorem, we find that the sum of (modulus of) trace squared should be zero, which is impossible as the norm squared is positive and non-zero (the identity conjugacy class has trace 1). \square

Or, turning it around, different (non-equivalent) irreps have different characters.

Using this approach, we can now compute degeneracy numbers for representations, that is compute how many copies of an irrep a given reducible representation contains. We first write:

$$R(g) = R_{1,1}(g) \oplus R_{1,2}(g) \dots \oplus R_{1,b_1}(g) \oplus R_{2,1}(g) \oplus R_{2,2}(g) \dots \oplus R_{2,b_2}(g) \dots = \oplus_{a,x} R_{a,x}(g) \quad (9.81)$$

where $x = 1, \dots, b_a$ with b_a denoting the degeneracy number. The question is how to find b_a ? Using the characters of each irreps, we know that:

$$\chi_R(g) = \text{Tr} \left[\begin{pmatrix} R_{1,1}(g) & 0 & 0 & 0 & \dots \\ 0 & \dots & 0 & 0 & \dots \\ 0 & 0 & R_{1,b_1}(g) & 0 & \dots \\ 0 & 0 & 0 & R_{2,1}(g) & \dots \\ \dots & & & & \dots \end{pmatrix} \right] = \sum_a b_a \text{Tr}[R_a(g)] = \sum_a b_a \chi_a(g). \quad (9.82)$$

As the trace of all representations within the same conjugacy class are the same we can equivalently write

$$\chi_R(C_\mu) = \sum_a b_a \chi_a(C_\mu). \quad (9.83)$$

We can combine this expression with the petite orthogonal theorem to find an expression for b_a . To do so we multiply by $n_\mu \chi_b^*(C_\mu)$, where n_μ is the number of element in class C_μ , and sum over classes

$$\sum_{\mu=1}^{N_c} n_\mu \chi_b^*(C_\mu) \chi_R(C_\mu) = \sum_{\mu=1}^{N_c} n_\mu \sum_a b_a \chi_b^*(C_\mu) \chi_a(C_\mu) \quad (9.84)$$

$$= \sum_a b_a \sum_{\mu=1}^{N_c} n_\mu \chi_b^*(C_\mu) \chi_a(C_\mu) = \sum_a b_a N \delta_{a,b} = N b_b \quad (9.85)$$

so that

$$b_a = \frac{1}{N} \sum_{\mu=1}^{N_c} n_{\mu} \chi_a^*(C_{\mu}) \chi_R(C_{\mu}). \quad (9.86)$$

We thus now have a formula for each number of irreps contained in a given representation:

Theorem 9.9.3 (Computing Degeneracy). *Assume a decomposition in irreps as*

$$R(g) = \oplus_{a,x} R_{a,x}(g) \quad (9.87)$$

for $x = 1, \dots, b_a$. Then we have

$$b_a = \frac{1}{N} \sum_{\mu} n_{\mu} \chi_a^*(C_{\mu}) \chi_R(C_{\mu}) \quad (9.88)$$

Remember this formula! It will be very useful in the problem sheets this week.

Another interesting consequence of the petite orthogonal theorem is the following one:

Theorem 9.9.4 (Sufficient condition for irreps). *A necessary and sufficient condition for a representation R to be an irrep is that*

$$\sum_{\mu=1}^{N_c} n_{\mu} |\chi(C_{\mu})|^2 = N \quad (9.89)$$

Demo. Using Eq.(9.83) and the petit orthogonality theorem (Eq.(9.78)), we find that

$$\sum_{\mu=1}^{N_c} n_{\mu} |\chi(C_{\mu})|^2 = \sum_{i,j} b_i b_j \sum_{\mu=1}^{N_c} n_{\mu} \chi_i(C_{\mu})^* \chi_j(C_{\mu}) = N \sum_{i,j} b_i b_j \delta_{ij} = N \sum_i b_i^2 \quad (9.90)$$

Being irreducible means having only one of the $b_i=1$, which proves the theorem. \square

For a finite group, it is easy to find the characters listed in table in the literature (google is your friend!), listed as follows:

irrep \ class	$C_1(e)$	C_2	C_3	C_4	C_5
R_1	1	1	1	1	1
R_2	d_2	$\chi_2(C_2)$	$\chi_2(C_3)$	$\chi_2(C_4)$	$\chi_2(C_5)$
R_3	d_3	$\chi_3(C_2)$	$\chi_3(C_3)$	$\chi_3(C_4)$	$\chi_3(C_5)$
R_4	d_4	$\chi_4(C_2)$	$\chi_4(C_3)$	$\chi_4(C_4)$	$\chi_4(C_5)$
R_5	d_5	$\chi_5(C_2)$	$\chi_5(C_3)$	$\chi_5(C_4)$	$\chi_5(C_5)$

Again, that was quite lot of quite technical material. And we've got more to come. So here's a panda (Fig 9.8). And if fluffy animals aren't your thing here's a clip of two guys trying to kayak down a melting ski slope.

9.9.1 Example with C3v.

Ok we now finally have the tools to put everything together and show how orthogonality relations can be used to identify irreps.

Let us again consider the C3v group, i.e. symmetry of the triangle. We first recall that it is a non-Abelian group of order 6. The conjugacy classes are $C_e = \{e\}$, $C_1 = \{c_+, c_-\}$ and $C_2 = \{\sigma, \sigma', \sigma''\}$ and so, as we saw before, from Lemma (9.7.2) there can be only 3 irreps.

We saw the 2D irrep in Eq. (9.61):

$$\begin{aligned} R(e) &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ R(c_+) &= \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, R(c_-) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \\ R(\sigma) &= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, R(\sigma') = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, R(\sigma'') = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \end{aligned} \quad (9.91)$$

There we simply claimed that this was an irrep. Now we can use Theorem 9.9.4 to check. Namely we have,

$$\sum_{\mu=1}^{N_c} n_{\mu} |\chi(C_{\mu})|^2 = 1 \times 2^2 + 2 \times (-1)^2 + 3 \times 0 = 6 = N. \quad (9.92)$$

What are the other irreps? We can of course have the trivial irrep where every group element is represented by a scalar equal to one. The trivial 1D irrep:

$$R(e) = 1, R(c_+) = 1, R(c_-) = 1, R(\sigma) = 1, R(\sigma') = 1, R(\sigma'') = 1 \quad (9.93)$$

(This is indeed an irreducible representation as $1 + 2 \times 1 + 3 \times 1 = 6$ in line with Theorem 9.9.4).

Now to identify the missing irrep. From Burnside's Lemma we know that it has to be 1D (i.e., $1^2 + 2^2 + l^2 = 6$ implies $l = 1$). From the petit orthogonality theorem we know that the characters of this final representation must be orthogonal. Thus denote the characters of the

Figure 9.8: **Motivational Panda.** Even if you're struggling a little to follow by this point you're still doing better than this panda. (God knows how these animals survive in the wild).

missing representation as $(\chi_e, \chi_c, \chi_c, \chi_\sigma, \chi_\sigma, \chi_\sigma)$ we have $(1, 1, 1, 1, 1, 1) \cdot (\chi_e, \chi_c, \chi_c, \chi_\sigma, \chi_\sigma, \chi_\sigma) = \chi_e + 2\chi_c + 3\chi_\sigma = 0$ and $(2, -1, -1, 0, 0, 0) \cdot (\chi_e, \chi_c, \chi_c, \chi_\sigma, \chi_\sigma, \chi_\sigma) = 2\chi_e - 2\chi_c = 0$. Thus we have $\chi_e = \chi_c$ and $\chi_\sigma = -\chi_e$. The only 1D representation that satisfies these conditions and Lemma (9.7.2) is thus:

$$R(e) = 1, R(c_+) = 1, R(c_-) = 1, R(\sigma) = -1, R(\sigma') = -1, R(\sigma'') = -1 \quad (9.94)$$

(Check for yourself that this is indeed an irrep for C_{3v}!)

Thus for the character table for the group C_{3v} we have Table 9.10.14.

	e	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

Table 9.1: Character table for point group C_{3v}. Here A_1 and A_2 denotes the 1D representation in Eq. (9.93) and Eq. (9.94), and E denotes the 2D representation in Eq.(9.61).

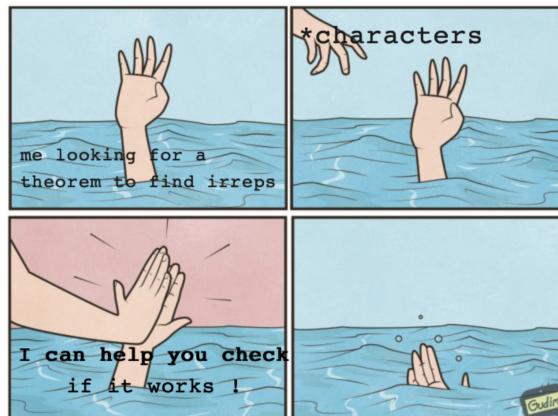


Figure 9.9: Note that in the above example we could get away with just studying the characters and the petite orthogonality theorem to identify our irreps. However, in general the characters will not suffice and you'll have to have already identified some non-trivial irreps and then can use the grand orthogonality theorem to help you identify the remainders. That said, even in this case knowing the character at least helps you guess the diagonal of your irrep. Credit: Mehdi Haddad.

Appendices

9.10 Non-examinable group and representation theory details/proofs

9.10.1 Properties of functions

Consider two sets, X and Y . A *function* (or *map*) f from X to Y is defined such that, for each element x belonging to X (denoted as $x \in X$), there exists a unique element y in Y associated with x . We represent this element as $y = f(x)$ and call it the image of x under the function f . We write it as:

$$f: X \rightarrow Y , \quad x \mapsto y = f(x) . \quad (9.95)$$

The set X is called the *domain* of f , and Y is its *image*. The set of elements in Y , which are images under f of elements in X , is called the image of X under f and is denoted as $f(X)$. In general, $f(X)$ is a subset of Y (we write $f(X) \subset Y$) and is not necessarily identical to Y .

The function f is *injective* if:

$$f(x) = f(x') \Rightarrow x = x' . \quad (9.96)$$

For an injective function, two elements of X cannot have the same image in Y . A function is *surjective* if $f(X) = Y$. For a surjective function, every element of Y is the image of at least one element of X . A function that is both injective and surjective is called *bijection*.

Let f be a function from X to Y and g be a function from Y to Z . The *composition* or *product* of these two functions $h: X \rightarrow Z$ is defined as:

$$h(x) = g(f(x)) . \quad (9.97)$$

The function h acts from X to Z and is denoted as:

$$h = g * f \quad (9.98)$$

or simply gf when there is no possibility of confusion with other operations. It should be noted that $f * g$ is not necessarily well-defined, and when it exists, it is not necessarily equal to $g * f$. For example, consider real-valued functions $f(x) = x^2$ and $g(y) = e^y$. We have:

$$(g * f)(x) = g(x^2) = e^{x^2} \quad (9.99)$$

and

$$(f * g)(x) = f(e^x) = e^{2x} . \quad (9.100)$$

The composition of functions is associative, meaning that if u , v , and w are functions from X to Y , Y to Z , and Z to W , respectively, then:

$$(w * (v * u))(x) = ((w * v) * u)(x) . \quad (9.101)$$

For each $x \in X$, both sides of this equation correspond to the element:

$$w(v(u(x))) \quad (9.102)$$

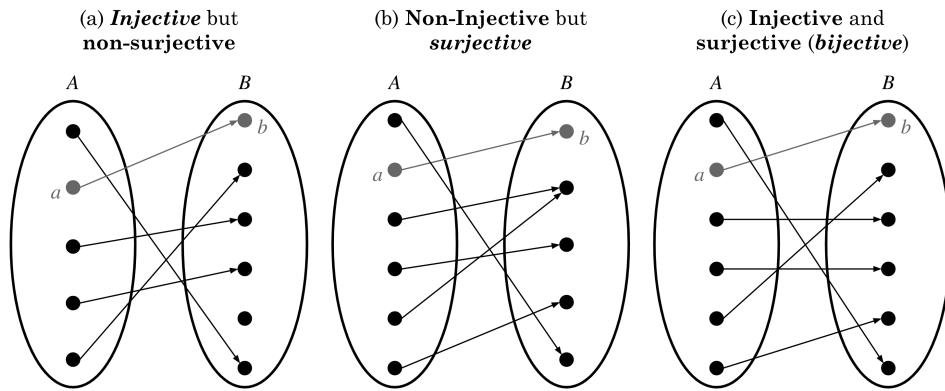


Figure 9.10: Diagram of injective, surjective and bijective functions: (Wiki page on functions).)

in W . Therefore, we can write:

$$(w * (v * u))(x) = ((w * v) * u)(x) = w * v * u. \quad (9.103)$$

If $f : X \rightarrow Y$ is a bijective application, then for each element y in Y , there is a unique element x in X such that $f(x) = y$, and, naturally, each element x has an image in Y . Therefore, we can define a bijective application $Y \rightarrow X$, $y \mapsto x$ such that $y = f(x)$. This application is called the *inverse* of f and is denoted by f^{-1} .

Often, we consider applications from a set X to itself. An example is given by real (complex) functions of a real (complex) variable. We define the identity application as:

$$e : X \rightarrow X, \quad x \mapsto e(x) = x. \quad (9.104)$$

This application is clearly bijective. If $f : X \rightarrow Y$ is a bijective application, f^{-1} exists, and we have:

$$(f^{-1} * f)(x) = x \quad (9.105)$$

for each x . Therefore, we write:

$$f^{-1} * f = e_X \quad (9.106)$$

where we denote the identity application of X by e_X . Note that we also have:

$$f * f^{-1} = e_Y \quad (9.107)$$

Theorem. Let X and Y be two sets containing the same finite number n of elements²³. The following three statements are equivalent:

- (i) $f : X \rightarrow Y$ is surjective,
- (ii) $f : X \rightarrow Y$ is injective,
- (iii) $f : X \rightarrow Y$ is bijective.

Proof:

- (i) $\Rightarrow f(X) = Y$. Thus, $f(X)$ is composed of n elements, which implies (ii).

²³Note that this theorem is not valid for two sets with different numbers of elements.

(ii) $\Rightarrow f(X)$ is composed of n elements. It follows that $f(X) = Y$, which can be reduced to property (i).

Since (i) and (ii) are each a consequence of the other, (iii) is also true, and the theorem is thus proved.

9.10.2 Reordering Theorem

A useful theorem in finite group theory is the reordering theorem:

Theorem 9.10.1 (Reordering theorem). *Let G be a finite group and m one of its elements. The ensembles mG and Gm are a re-order of G .*

First lets check that this is true for an example we've just looked at - the rectangle symmetry group R_2 . Suppose we take the set $G = \{e, a, b, c\}$ and multiply each element by the element $m = a$ to give $mG = \{a, a^2, ab, ac\}$. Then from the Cayley table of the group in Eq. 9.15 we get $mG = \{a, e, c, b\}$. This is just the original group reshuffled. As the group is Abelian the same applies for Gm .

This is the type of theorem where I almost feel that just staring and convincing yourself of it is the best way forward- as groups are closed multiplying through by a group element gives another group element and the requirement for each element have an inverse means that you always get a different element on multiplying through. Alternatively, one can more formally argue the following:

Demo. The map $x \rightarrow mx$ is surjective (i.e. all elements have an antecedent). Indeed for any $y \in G$, $m^{-1}y \in G$ (group property) and $m(m^{-1}y) = y$. The map $x \rightarrow mx$ is also injective (it maps distinct elements to distinct elements). For any $x \neq x'$, $mx \in G$ is different from mx' . Indeed, if $mx = mx'$ then $m^{-1}(mx) = m^{-1}mx'$ and $x = x'$. Hence the map is bijective and therefore a reordering. The proofs works in a similar way for the map $x \rightarrow xm$. (For more on the properties of functions see Appendix 9.10.1) \square

9.10.3 Proof of Lagrange Theorem, Right and Left cosets

Let G be a group and H one of its proper subgroups. We can define an equivalence relation —different from the last one— between the elements of G as follows: if $x, y \in G$ and $x^{-1}y \in H$ then x and y are equivalent and we write $x \sim y$.

This is indeed an equivalence relation:

- $a^{-1}a = e \forall a \in G$, and $e \in H$, so that $a \sim a$.
- if $a \sim b$ then $a^{-1}b \in H$. The inverse of $a^{-1}b$ is $b^{-1}a$ and since H is a group, $b^{-1}a \in H$, so that $b \sim a$.
- if $a \sim b$ and $b \sim c$, then $a^{-1}b$ and $b^{-1}c$ are both in H , thus so is the their product $a^{-1}bb^{-1}c = a^{-1}c$.

This equivalence relation therefore makes it possible to divide the elements of G into disjoint classes. If $x^{-1}y \in H$, then y is equal to an element of H multiplied on the left by x . We indicate the set thus constructed by the symbol

$$C_x = xH \tag{9.108}$$

which we call the *left co-set associated to x*.

The map $H \rightarrow xH$ is one-to-one (bijective). Indeed, each element $z \in xH$ is the image of $x^{-1}z \in H$ so that the map is surjective. But the map is also injective since for $y, y' \in H$, we have $xy = xy' \Rightarrow y = y'$.

We could also define a second equivalence relation $x \sim y$ if $yx^{-1} \in H$ and in this case, we can define the concept of right co-set Hx in the same way as before.

These concepts are very useful, and allows in particular to prove Lagrange Theorem:

Demo. Consider the co-sets on the left of H . They are all disjoint or identical (since they are equivalence classes). If there are n distinct left co-sets, their union is G . So, if we denote by g and h the orders of G and H respectively, then $g = nh$ and the theorem is proved. \square

Let us give an example for the following order 4 group

$$G = \begin{array}{c|cccc} * & e & a & b & c \\ \hline e & e & a & b & c \\ a & a & e & c & b \\ b & b & c & e & a \\ c & c & b & a & e \end{array} \quad (9.109)$$

that has the subgroup $H = \{e, a\}$:

$$H = \begin{array}{c|cc} * & e & a \\ \hline e & e & a \\ a & a & e \end{array} \quad (9.110)$$

We can now construct the left co-sets:

$$C_e = eH = \{e, a\} \quad (9.111)$$

$$C_a = aH = \{a, e\} = C_e \quad (9.112)$$

$$C_b = bH = \{b, c\} \quad (9.113)$$

$$C_c = cH = \{c, b\} = C_b \quad (9.114)$$

And we see indeed that we have *two* left co-set of order 2.

9.10.4 Composition of Conjugacy classes theorem statement and proof

Theorem 9.10.2 ("Composition" of conjugacy classes). *Let G be a group, and C_x and C_y two of its conjugacy classes. Then we have*

$$C_\nu * C_\mu = \sum_\lambda n_{\mu\nu\lambda} C_\lambda \quad (9.115)$$

with $n_{\mu\nu\lambda}$ integer. Here the multiplication $C_\nu * C_\mu$ is defined as the entire set $[xy]$ for all $x \in C_\nu$ and $y \in C_\mu$. Additionally, $n_{\nu\mu\lambda} = n_{\mu\nu\lambda}$ and $n_{1\nu\lambda} = n_{\nu 1\lambda} = \delta_{\nu,\lambda}$.

To prove this, let us first prove a variant of the reordering theorem:

Theorem 9.10.3 (Reordering theorem within conjugacy classes). *Let G be a group, m one of its elements, and C one of the conjugate classes. Then the application $C \rightarrow m^{-1}Cm$ is bijective into itself: The ensemble $m^{-1}Cm$ is thus a re-ordering of C .*

Demo. First notice that this is a map into itself since for any $y \in C$, $m^{-1}ym \in C$ (conjugacy class property). Second, the map is surjective. Indeed, for any $y \in C$, it exists $x = mym^{-1} \in G$ such that $y = m^{-1}xm$. By definition, x is thus also in C and therefore for all $y \in C$ there is an antecedent in C . Third, the map $x \rightarrow mx$ is injective (it maps distinct elements to distinct elements). For any x, x' , we have $m^{-1}xm = m^{-1}x'm$ implies that $mm^{-1}xmm^{-1} = mm^{-1}x'mm^{-1}$ so that $x = x'$. \square

We shall soon prove that $n_{\nu\mu\lambda}$ is indeed an integer. But first, let us note indeed that $n_{\nu\mu\lambda} = n_{\mu\nu\lambda}$, because the two sets $C_\nu * C_\mu$ and $C_\mu * C_\nu$ are identical. Indeed

$$C_\nu * C_\mu = [uv] = [uv(u^{-1}u)] = [u(vu^{-1}u)] = [uvu^{-1}u] = [(uvu^{-1})u] = C_\mu * C_\nu$$

since u represents all the element of C_ν , and since, from the previous theorem, (uvu^{-1}) represent a re-ordering of the all the element of C_μ as v changes. Additionally, we also see that, denoting the class that contains e are C_1 , that $C_1 * C_\nu = C_\nu$ so that $n_{1\nu\lambda} = n_{\nu 1\lambda} = \delta_{\nu,\lambda}$.

Let us now prove that $n_{\nu\mu\lambda}$ is an integer. First we prove the following lemma:

Lemme 9.10.4. *A necessary and sufficient condition for a set $[R]$ to be composed uniquely of a set of entire classes of a group G is that*

$$\forall u \in G, \quad u^{-1}[R]u = [R]$$

Demo. The condition is necessary because, if indeed $[R]$ is composed of entire sets, then in each of these sets S , $u^{-1}[S]u$ is itself the set S by the reordering theorem.

To see that the condition is sufficient, let us proceed by contradiction and write

$$[R] = [R'] + [R'']$$

where $[R']$ is the largest subset of $[R]$ made of entire classes, and the reminder $[R'']$ thus must contain elements that are not an entire class. Since $[R']$ satisfy $u^{-1}[R']u = [R']$ then

$$u^{-1}[R'']u = [R''].$$

e cannot be in $[R'']$ since it is, itself, a class. Let us suppose $[R'']$ is not empty, and $x \in [R'']$. Then it must exists $y \in G$, conjugated to x , which is *not* in $[R'']$. Since y is conjugated to x we have $u^{-1}xu = y$ for some $u \in G$. But then since $u^{-1}[R'']u = [R'']$ for all u , y must be in $[R'']$. We have thus reach a contradiction, and $[R'']$ is empty. \square

Now we can proceed. Let H be a finite group of order h and conjugacy classes $C_1 = \{e\}$, $C_2, \dots, C_\mu, \dots, C_{N_C}$ its classes. We shall denote by n_μ the number of elements in the class C_μ and by N_C the total number of classes. We have, of course

$$\sum_{\mu=1}^{N_C} n_\mu = h \tag{9.116}$$

Let C_μ and C_ν be two classes of H , and consider the product

$$C_\mu * C_\nu = [uv] \tag{9.117}$$

where u and v are elements of C_μ and C_ν . Then for each $x \in H$, we have

$$x^{-1}C_\mu * C_\nu x = [x^{-1}uvx] = [x^{-1}u(xx^{-1})vx] = [(x^{-1}ux)(x^{-1}vx)] \tag{9.118}$$

Using the theorem of rearrangement, we see that $[(x^{-1}ux)(x^{-1}vx)]$ is just a reordering of $[uv]$ so that

$$x^{-1}C_\mu * C_\nu x = C_\mu * C_\nu \quad (9.119)$$

Applying lemma 9.10.4 then prove theorem 9.10.2.

9.10.5 Proof of Schur's lemma

Let us prove Schur's lemma. We are going to need the definition of "kernel" and "image" of an operator.

Definition 9.10.5 (Kernel of an operator). The kernel $\text{Ker}A$ of an operator $A : V_1 \rightarrow V_2$ is the set of vector $\mathbf{v}_1 \in V_1$ such that $A\mathbf{v}_1 = 0$.

Definition 9.10.6 (Image of an operator). The image $\text{Im}A$ of an operator $A : V_1 \rightarrow V_2$ is the set of vector $\mathbf{v}_2 \in V_2$ for which $\exists \mathbf{v}_1 \in V_1$ such that $\mathbf{v}_2 = A\mathbf{v}_1$.

Theorem 9.10.7 (Rank-Nullity theorem). *For any operator $A : V_1 \rightarrow V_2$, define $\text{Rank}(A) = \dim[\text{Im}(A)]$ and $\text{Nullity}(A) = \dim[\text{Ker}(A)]$, then $\dim[V_1] = \text{Nullity}(A) + \text{Rank}(A)$.*

9.10.6 Proof of lemma 1

Demo. For all $g \in G$ we have:

- $\forall \mathbf{v}_1 \in \text{Ker}A$ we have $A(R_1(g)\mathbf{v}_1) = R_2(g)A\mathbf{v}_1 = 0$. This means that the vector $R_1(g)\mathbf{v}_1$ is also in the kernel of A . In other words a vector in $W = \text{ker } A$ stays in W upon transformation by $R_1(g), \forall g$: W is thus a stable sub-space of $R_1(g)$.
- From a similar reasoning, we can deduce that the image $W' = \text{Im}A$ is also a stable subspace for $R_2(g)$. Indeed, this requires implies that if a vector can be written as $\mathbf{v}_2 = A\mathbf{v}_1$, then $R_2(g)\mathbf{v}_2$ can also be written as $A\mathbf{v}'_1$. This is the case since $R_2(g)\mathbf{v}_2 = R_2(g)A\mathbf{v}_1 = A R_1(g)\mathbf{v}_1 = A\mathbf{v}'_1$.

We thus conclude that $W = \text{Ker}A$ is a stable subspace $R_1(g)$ and that $W' = A$ is a stable subspace of $R_2(g)$. However, by assumption, both representations are irreducible, so the only subspaces are either 0 or the entire space. We thus have either:

- $\text{Ker}A = 0$, in which case the image is not empty, so that $\text{im}A = V_2$. But this implies that the transformation A is invertible, but then $A^{-1}R_2(g)A = R_1(g) \forall g$, and R_2 and R_1 are equivalent, which contradicts the hypothesis.
- $\text{Ker}A = V_1$, in which case $A = 0$ (and the image is empty: $\text{im}A = 0$).

□

9.10.7 Proof of lemma 2

In this case, we have a map between either the same, or between equivalent representations. Additionally, $V_1 = V_2 = V$, and A is a square matrix. If the representation are equivalent, we can always rotate the space so that they are indeed identical.

Let us consider then that $R_1(g) = R_2(g) = R(g) \forall g$.

Demo. By the fundamental theorem of algebra, it exists an eigenvalue $\lambda \in \mathbb{C}$ such that $\det(A - \lambda I) = 0$. Consider then the equation

$$(A - \lambda I)R(g) = R(g)(A - \lambda I). \quad (9.120)$$

so that if $v \in \text{Ker}(A - \lambda I)$ then $R(g)v$ also in $\text{Ker}(A - \lambda I)$. $W = \text{Ker}(A - \lambda I)$ is thus a stable subspace of transformation by $R(g) \forall g$. Given $R(g)$ is irreducible, either $W = 0$ or $W = V$. W cannot be zero, because at least the eigenvector of A corresponding to λ is in W ! Therefore $W = V$.

We this have $\text{Ker}(A - \lambda I) = V$, so that $(A - \lambda I) = 0$ and therefore $A = \lambda I$. \square

9.10.8 Proof of grand orthogonality Lemma

Demo. Consider any matrix X and the matrix M defined as

$$M = \sum_{g \in G} R_1(g^{-1}) X R_2(g) \quad (9.121)$$

Then we have, for any $y \in G$

$$\begin{aligned} M R_2(y) &= \sum_{g \in G} R_1(g^{-1}) X R_2(g) R_2(y) \\ &= \sum_{g \in G} R_1(y) R_1(y^{-1}) R_1(g^{-1}) X R_2(g) R_2(y) \\ &= R_1(y) \sum_{g \in G} R_1(y^{-1}) R_1(g^{-1}) X R_2(g) R_2(y) \\ &= R_1(y) \sum_{g \in G} R_1(y^{-1}g^{-1}) X R_2(gy) \\ &= R_1(y) \sum_{g \in G} R_1((gy)^{-1}) X R_2(gy) \\ &= R_1(y) \sum_{h \in G} R_1(h^{-1}) X R_2(h) = R_1(y) M \end{aligned}$$

We can thus use Schur's lemmas on M . Since R_1 and R_2 are not equivalent we have $M = 0$ so that

$$\sum_{g \in G} \sum_{jl} [R_1(g^{-1})]_{kj} X_{jl} [R_2(g)]_{lm} = 0 \quad (9.122)$$

but $R_1(g^{-1})$ is $R_1(g)^\dagger$ so that

$$\begin{aligned} \sum_{g \in G} \sum_{jl} [R_1(g)]_{kj}^\dagger X_{jl} [R_2(g)]_{lm} &= 0 \\ \sum_{g \in G} \sum_{jl} [R_1(g)]_{jk}^* X_{jl} [R_2(g)]_{lm} &= 0 \end{aligned} \quad (9.123)$$

Using $X_{jl} = 0$ except for one pair jl for which $X_{jl} = 1$ leads to eq.(9.54).

We now turn to eq.(9.56). If we construct the matrix M using the same representation, we get again $MR(x) = R(x)M$ and by the second Schur lemma:

$$\sum_{g \in G} R(g^{-1}) X R(g) = c(X) I \quad (9.124)$$

which, in full matrix notation, means

$$\sum_{g \in G} \sum_{jl} [R(g)]_{jk}^* X_{jl} [R(g)]_{lm} = c(X) \delta_{km}$$

We just need to compute the constant. Let us work on the diagonal, when $k = m$, and sum over k so that we have

$$\begin{aligned}
 \sum_{g \in G} \sum_{jkl} [R(g^{-1})]_{kj} X_{jl} [R(g)]_{lk} &= n_a c(X) \\
 \sum_{g \in G} \sum_{jl} X_{jl} \sum_k [R(g^{-1})]_{kj} [R(g)]_{lk} &= n_a c(X) \\
 \sum_{g \in G} \sum_{jl} X_{jl} [R(g) R(g^{-1})]_{lj} &= n_a c(X) \\
 \sum_{g \in G} \sum_{jl} X_{jl} I_{lj} &= n_a c(X) \\
 \sum_{g \in G} \text{Tr} X &= n_a c(X) \\
 c(X) &= \frac{N}{n_A} \text{Tr} X
 \end{aligned}$$

Using again $X_{jl} = 0$ except for one pair jl for which $X_{jl} = 1$ leads to eq.(9.56). \square

9.10.9 Proof of Burnside Lemma

We can now prove Burnside lemma. Consider the regular representation (which we introduced in the previous chapter) that is obtained using $N \times N$ matrices for a finite group of order N . Then we have a amazing fact: Any irreducible representation D of G appears in the regular representation $\dim(D)$ times:

Theorem 9.10.8 (Regular representation decomposition). *Consider the regular representation of a group. Then we have the following decomposition in irrep*

$$R^r(g) = \bigoplus_{a,x} R_{a,x}(g) = \bigoplus_a R_a R_a(g) \quad (9.125)$$

where R_a is the dimension of the representation a .

Demo. We simply apply

$$b_a = \frac{1}{N} \sum_{\mu} n_{\mu} \chi_a^*(C_{\mu}) \chi^r(C_{\mu}) \quad (9.126)$$

and using the fact that for the regular representation all characters are zero except for the one corresponding to e , we find

$$b_a = \frac{1}{N} \chi_a^*(C_e) = \frac{R_a}{N} N = R_a \quad (9.127)$$

\square

This finally allows to prove Burnside's lemma, by simply counting the dimensions:

Lemme 9.10.9 (Burnside lemma).

$$\sum_{i=1}^{N_r} d_i^2 = N \quad (9.128)$$

9.10.10 Representations of Lie Groups and Lie Algebras

The following theorems hold on the relationship between representations of Lie groups and Lie algebras ²⁴:

²⁴These statements are taken from Representation Theory for Geometric Quantum Machine Learning - see there for further discussion.

Theorem 9.10.10 ((Lie group reps induce Lie algebra reps)). *Let G be a matrix Lie group with Lie algebra \mathfrak{g} . If R is a representation of G on V , then there exists a unique representation r of \mathfrak{g} on V given by*

$$r(J) = \frac{d}{dt}(R(e^{tX})) \Big|_{t=0}, \text{ for all } X \in \mathfrak{g}. \quad (9.129)$$

We call r the representation of \mathfrak{g} induced by R .

Theorem 9.10.11 ((Lie algebra reps lift to simple Lie group representations)). *Let G be a simply connected matrix Lie group, and let r be a representation of the corresponding Lie algebra on V . Then there is a unique representation R of G with the property*

$$R(e^X) = e^{r(X)}, \text{ for all } X \in \mathfrak{g}. \quad (9.130)$$

Theorem 9.10.12 ((Lie algebra reps locally lift to Lie group reps).). *Let G be a matrix Lie group, and let r be a representation of the corresponding Lie algebra on V . Then using Theorem 1, we can always locally define a representation R on G by the mapping*

$$R(g) = e^{r(X)}, \text{ defined for all } g = e^X \text{ nearby } I. \quad (9.131)$$

Here, by “nearby” we mean “wherever the exponential map is a diffeomorphism”. Indeed, in this region, all g can be written as $g = e^X$.

9.10.11 Projectors

In general, Theorem 9.9.3 allows us to compute how many times any irrep appears in any representation we are trying to reduce. But we have yet to establish a general strategy for finding the *basis* in which the representation is block diagonalized to the sum of irreps. We address that in this section.

9.10.12 Basis notation

Let us start by introducing *basis notation*. As we saw in the previous section, we can take a representation and write it as a direct sum of irreducible representations. That is, we can write $R(g) = \bigoplus_{a,x} R(a, x(g))$, or equivalently

$$R(g) = \begin{pmatrix} R_1(g) & 0 & 0 & 0 & \dots \\ 0 & R_1(g) & 0 & 0 & \dots \\ 0 & 0 & R_2(g) & 0 & \dots \\ 0 & 0 & 0 & R_2(g) & \dots \\ \dots & & & & \end{pmatrix} = \begin{pmatrix} R_{1,1}(g) & 0 & 0 & 0 & \dots \\ 0 & R_{1,2}(g) & 0 & 0 & \dots \\ 0 & 0 & R_{2,1}(g) & 0 & \dots \\ 0 & 0 & 0 & R_{2,2}(g) & \dots \\ \dots & & & & \end{pmatrix}$$

We are going to denote the element in this basis using 3 indices as : $\{|a, j, x\rangle\}$. That is, we can write

$$\langle a, j, x | R(g) | b, k, y \rangle = \delta_{a,b} \delta_{x,y} [R_{a,x}(g)]_{jk} \quad (9.132)$$

Here $[R_{a,x}(g)]_{jk}$ is just the j, k element of the matrix for the representation $R_a(g)$. Here:

- $a = 1, 2, 3, \dots$ denote type of representation, i.e. indicate each of the non-equivalent representations R_1, R_2, R_3, \dots . At this point: $R_a(g)$ acts in a subspace \mathcal{H}_a .
- The same representation can be used multiple times, as we have seen in the previous example. The x index denotes which of these equivalent representation we consider.
- Finally; $\{|a, j, x\rangle\}$ with $j = 1, 2, 3, \dots$ is used to represent a basis within the x th copy of subspace \mathcal{H}_a .

9.10.13 How to construct projectors

The question we address in this section is how to construct projectors onto $|a, j, x\rangle$. To do so, we start from

$$R(g) = \oplus_{a,x} R_{a,x}(g) \quad (9.133)$$

and

$$R_{a,x} = \sum_{lm} \langle a, l, x | R(g) | a, m, x \rangle |l\rangle \langle m| = \sum_{lm} [R_a(g)]_{lm} |l\rangle \langle m|. \quad (9.134)$$

so applying the representation to the vector $|a, j, x\rangle$ gives:

$$R(g) |a, j, x\rangle = \sum_k [R(a(g))]_{kj} |a, k, x\rangle. \quad (9.135)$$

Now we multiply by $[R_b(g)]_{k'j'}^*$ and sum over the group elements to give:

$$\begin{aligned} \sum_g [R_b(g)]_{k'j'}^* R(g) |a, j, x\rangle &= \sum_k \sum_g [R_b(g)]_{k'j'}^* [R(a(g))]_{kj} |a, k, x\rangle \\ &= \sum_k \sum_g [R_b(g)^\dagger]_{j'k'} [R(a(g))]_{kj} |a, k, x\rangle. \end{aligned} \quad (9.136)$$

and now, using the grand orthogonality theorem, one finds

$$\begin{aligned} \sum_g [R_b(g)]_{k'j'}^* R(g) |a, j, x\rangle &= \sum_k \frac{N}{n_a} \delta_{jj'} \delta_{kk'} \delta_{ab} |a, k, x\rangle \\ &= \frac{N}{n_a} \delta_{ab} \delta_{jj'} |a, k', x\rangle. \end{aligned} \quad (9.137)$$

Thus, we see that we can define

$$\hat{\Pi}_{kj}^b = \frac{n_a}{N} \sum_g [R_b(g)]_{kj}^* R(g) \quad (9.138)$$

such that we have

$$\hat{\Pi}_{kj}^b |a, j, x\rangle = \frac{n_a}{N} \sum_g [R_b(g)]_{kj}^* R(g) |a, j, x\rangle = \delta_{ab} |a, k, x\rangle \quad (9.139)$$

That is this operator satisfies:

$$\hat{\Pi}_{kj}^a |a, j, x\rangle = |a, k, x\rangle \quad (9.140)$$

$$\hat{\Pi}_{kj}^a |b, j', x\rangle = 0 \quad \text{otherwise} \quad (9.141)$$

so that if we know one vector of the basis, then we can find all the other ones! And $\hat{\Pi}_{kk}^a$ can be used to find that first vector.

Now, let us take the trace. We find

$$\hat{P}_a = \sum_j \hat{\Pi}_{jj}^a = \sum_g \frac{n_a}{N} \sum_j [R_b(g)]_{jj}^* R(g) = \frac{n_a}{N} \sum_g \chi_a^*(g) R(g) \quad (9.142)$$

This is a projector on the basis of the representation! In other words we have

$$\hat{P}_a = \sum_{j,x} |a, j, x\rangle \langle a, j, x| = \frac{n_a}{N} \sum_g \chi_a^*(g) R(g). \quad (9.143)$$

In summary

- P_a is a projector in the space generated by one irreducible representation, that is the space of all $|a, j, x\rangle$ for all j and x . That is, on the Hilbert space $\mathcal{H}_a = \bigoplus_x \mathcal{H}_{a,x}$.
- Π_{jj}^a is a projector on the subspace $|a, j, x\rangle$ for all x , but with a fixed j (that is, one of the dimension of the representation).
- Π_{kj}^a is a generalised projector.

As ever let's quickly convince ourselves that this does actually work by looking at a quick example. Consider the Pauli group $G = \{\pm(i)\sigma_x, \pm(i)\sigma_y, \pm(i)\sigma_z, \pm(i)I\}$. We first note that all Pauli's are traceless and so their contribution vanishes leaving us with only the contribution from the identity terms. Thus we have:

$$\begin{aligned} P_a &= \frac{2}{16}(\text{Tr}(I)^*I + \text{Tr}(-I)^*(-I) + \text{Tr}(iI)^*(iI) + \text{Tr}(-iI)^*(-iI)) \\ &= \frac{4}{16}(I + I + I + I) = I, \end{aligned} \quad (9.144)$$

as expected. (Note the similarities between this and the group averaging results in Section 9.8).

9.10.14 Ammonia Molecule Example

Consider the ammonia molecule shown here:

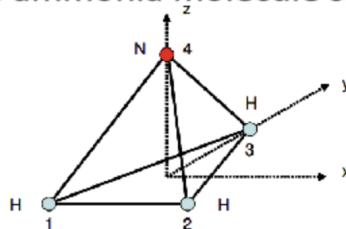


Figure 9.11: Credit: Stefan Visnjic

Let us end by tying everything together with the example of the vibrations modes of the ammonia molecule (NH_3). This will be a classical treatment; however, the lessons carry over to

quantum problems. For a more detailed introduction to the symmetry properties of the ammonia molecule see Chapter 1 of Vincenzo Savona's notes. You will also have the pleasure of working through this example in all its gory details in the problem sheet this week. In fact, if you want to take a stab at that problem sheet without any hints, stop reading now and have a go at it first. However, there's quite a bit to put together so I thought this week I'd use the notes to talk you through it.

The ammonia molecule consists of three hydrogen atoms arranged in a triangle and one nitrogen atom located on the vertical axis passing through the center of the triangle (see Figure 9.12). In molecular physics, it is known that for small displacements from the equilibrium positions, the restoring forces on the four atoms are proportional to the displacements. The molecule behaves as a system of coupled harmonic oscillators with 12 degrees of freedom (three spatial coordinates for each atom). Let's denote $\mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3$, and \mathbf{R}_4 as the coordinates of the three hydrogen atoms and the nitrogen atom. If the equilibrium positions of the four atoms are $\mathbf{R}_j^{(0)}$, where $j = 1, \dots, 4$, then the displacement vectors are given by $\mathbf{u}_j = \mathbf{R}_j - \mathbf{R}_j^{(0)}$. Let m_H and m_N be the masses of the hydrogen and nitrogen atoms, respectively.

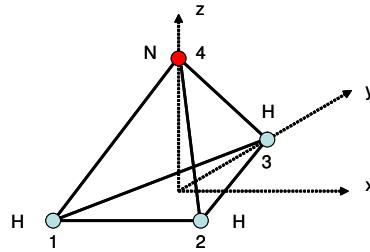


Figure 9.12: Scheme of the NH_3 molecule. In the figure, you can also see the numbering of the four atoms and the choice of the reference frame.

The symmetries of ammonia correspond to the symmetry group of a triangle in 2D. That is, we spot immediately that the relevant symmetry group here is our favourite $\text{C}3\text{v}$ with group elements: $e, c_+, c_-, \sigma, \sigma', \sigma''$ (i.e., identity, rotations by $\pm 2\pi/3$ and reflections in each of the axis of the triangle). So what is the representation of $\text{C}3\text{v}$ on the 12 dimensional space spanned by $\mathbf{u} := (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4)$ corresponding to the spacial displacements of the atoms that ammonia is made up of?

Well the representation of the identity is easy that's just:

$$R(e) = \mathbb{1}_{12 \times 12} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (9.145)$$

The c_+ rotation by $2\pi/3$ cyclically rotates molecules 1,2, and 3 (i.e., sends molecule 1 to 3, 2 to 1 and 3 to 2) and corresponds to a $2\pi/3$ rotation about the z axis in the x,y plane. The rotation

c_- is just the converse of this. Therefore we have:

$$R(c_+) = \begin{pmatrix} 0 & 0 & S & 0 \\ S & 0 & 0 & 0 \\ 0 & S & 0 & 0 \\ 0 & 0 & 0 & S \end{pmatrix} \quad \text{with} \quad S = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (9.146)$$

$$R(c_-) = \begin{pmatrix} 0 & S^{-1} & 0 & 0 \\ 0 & 0 & S^{-1} & 0 \\ S^{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & S^{-1} \end{pmatrix} \quad \text{with} \quad S^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The σ reflection around the y axis is also easy to spot. This just switches the positions of molecules 1 and 2 and sends $-x$ to x (and vice versa) (see Fig. 9.12) and leaves all other coordinates invariant. Similar analysis can be applied to the σ_2 and σ_3 reflections. Thus we have:

$$R(\sigma) = \begin{pmatrix} 0 & M_1 & 0 & 0 \\ M_1 & 0 & 0 & 0 \\ 0 & 0 & M_1 & 0 \\ 0 & 0 & 0 & M_1 \end{pmatrix} \quad \text{with} \quad M_1 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R(\sigma') = \begin{pmatrix} M_2 & 0 & 0 & 0 \\ 0 & 0 & M_2 & 0 \\ 0 & M_2 & 0 & 0 \\ 0 & 0 & 0 & M_2 \end{pmatrix} \quad \text{with} \quad M_2 = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (9.147)$$

$$R(\sigma'') = \begin{pmatrix} 0 & 0 & M_3 & 0 \\ 0 & M_3 & 0 & 0 \\ M_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & M_3 \end{pmatrix} \quad \text{with} \quad M_3 = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Ok so now we have a representation on the 12d space spanned by the coordinates of the displacements of the ammonia molecule. We expect that this 12d representation is reducible. Indeed we know this as we've already seen that there are 3 irreps of $C3v$ in Section 9.9.1, 2 1D irreps and 1 2D irrep. To save you flicking back I'll just copy them down to here:

The trivial 1D irrep:

$$R_1(e) = 1, R_1(c_+) = 1, R_1(c_-) = 1, R_1(\sigma) = 1, R_1(\sigma') = 1, R_1(\sigma'') = 1 \quad (9.148)$$

The 1D sign irrep:

$$R_2(e) = 1, R_2(c_+) = 1, R_2(c_-) = 1, R_2(\sigma) = -1, R_2(\sigma') = -1, R_2(\sigma'') = -1 \quad (9.149)$$

The 2D irrep:

$$R_3(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$R_3(c_+) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, R_3(c_-) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \quad (9.150)$$

$$R_3(\sigma) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, R_3(\sigma') = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, R_3(\sigma'') = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

	e	$2c_+$	$3\sigma_v$
R_1	1	1	1
R_2	1	1	-1
R_3	2	-1	0
R	12	0	2

Table 9.2: Character table for point group $C3v$.

The corresponding $C3v$ character table is shown in Table 9.10.14.

So how do we write our $12d$ rep in terms of these irreps? Well we can use Theorem 9.9.3 to compute the number of times each of these irreps appears in our rep. That is, we can use

$$b_a = \frac{1}{N} \sum_{\mu} n_{\mu} \chi_a^*(C_{\mu}) \chi_R(C_{\mu}) \quad (9.151)$$

where b_a is the degeneracy factor of representation a , n_{μ} is the number of group elements in conjugacy class μ and N is the order of the group. Thus we have

$$\begin{aligned} b_1 &= \frac{1}{6} (1 \times 1 \times 12 + 2 \times 1 \times 0 + 3 \times 1 \times 2) = 3 \\ b_2 &= \frac{1}{6} (1 \times 1 \times 12 + 2 \times 1 \times 0 - 3 \times 1 \times 2) = 1 \\ b_3 &= \frac{1}{6} (1 \times 2 \times 12 - 2 \times 1 \times 0 + 3 \times 0 \times 2) = 4 \end{aligned}$$

And thus, we can express R in terms of the irreducible representations of C_{3v} as follows:

$$R = 3R_1 \oplus R_2 \oplus 4R_3. \quad (9.152)$$

We now know how to compose R into irreps. But we do not yet know the basis to do so. That is, we need to look for a basis where 3×1 vectors are invariant under R_1 , where 1×1 vectors are invariant under R_2 , and 4×2 vectors are invariant under R_3 ²⁵. To achieve this, it suffices to choose an arbitrary basis (we choose for simplicity $\mathbf{v}_i = \hat{\mathbf{e}}_i$ where $\hat{\mathbf{e}}_i$ is a normalized vector with the i -th entry being the only non-zero entry) and apply various projectors.

Recall from Eq. (9.138) that a projector onto a basis state of an irrep takes the form:

$$\hat{\Pi}_{kj}^b = \frac{n_b}{N} \sum_g [R_b(g)]_{kj}^* R(g) \quad (9.153)$$

where n_b is the dimension of the representation b and N is the order of the group. That is, we have and we have

$$\hat{\Pi}_{kj}^a |a, j, x\rangle = |a, k, x\rangle \quad (9.154)$$

$$\hat{\Pi}_{kj}^a |b, j', x\rangle = 0 \quad \text{otherwise} \quad (9.155)$$

where $|a, k, x\rangle$ is a basis for the reduced representation. So if we apply $\hat{\Pi}_{kj}^b$ on an arbitrary state and get a non-zero vector, we are left with a (non-normalised) basis state. If we get a set of these we can create an orthonormal basis via the gram-schmidt procedure.

²⁵By comparison, remember the 2 fold tensor representation of $SU(2)$ decomposed into a direct sum of irreps of irreps on $SU(3)$ and $SU(1)$ in the Bell basis. We currently know that $R = 3R_1 \oplus R_2 \oplus 4R_3$ in some basis but we do not know which yet. In our warm up example the three Bell states $\{|\psi_+\rangle, |\phi_+\rangle, |\phi_-\rangle\}$ and

Let us start by constructing the projector corresponding to R_1 :

$$\hat{\Pi}_{11}^1 = \frac{1}{6} \sum_g [R_1(g)]_{11}^* R(g) = \frac{1}{6} (R(e) + R(c_+) + R(c_1) + R(\sigma) + R(\sigma') + R(\sigma'')). \quad (9.156)$$

Thus we have:

$$\hat{\Pi}_{11}^1 = \frac{1}{6} \begin{pmatrix} \mathbb{1} + M_2 & S^{-1} + M_1 & S + M_3 & 0 \\ S + M_1 & \mathbb{1} + M_3 & S^{-1} + M_2 & 0 \\ S^{-1} + M_3 & S + M_2 & \mathbb{1} + M_1 & 0 \\ 0 & 0 & 0 & S^{(1)} \end{pmatrix} \quad (9.157)$$

where we have defined $S^{(1)} = \mathbb{1} + M_1 + M_2 + M_3 + S + S^{-1}$. Similarly for R_2 we have

$$\hat{\Pi}_{11}^2 = \frac{1}{6} \sum_g [R_2(g)]_{11}^* R(g) = \frac{1}{6} (R(e) + R(c_+) + R(c_1) - R(\sigma) - R(\sigma') - R(\sigma'')). \quad (9.158)$$

so we have the same as above but get a minus sign in front of each of the M_i terms. That is,

$$\hat{\Pi}_{11}^2 = \frac{1}{6} \begin{pmatrix} \mathbb{1} + M_2 & S^{-1} - M_1 & S - M_3 & 0 \\ S - M_1 & \mathbb{1} - M_3 & S^{-1} - M_2 & 0 \\ S^{-1} - M_3 & S - M_2 & \mathbb{1} - M_1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad (9.159)$$

where we note that $\mathbb{1} - M_1 - M_2 - M_3 + S + S^{-1} = 0$. I'll leave it up to you to compute $\hat{\Pi}_{11}^3$ yourself.

We can now use the projectors to find a basis for each of the irreps. Let us start with R_1 . We can find the first 3 basis vectors by evaluating $\mathbf{u} \equiv \hat{\Pi}_{11}^1 \mathbf{v}$ and to give a set of 3 linearly independent vectors \mathbf{u} in this basis. One possible choice (not necessarily unique, also dependent on the basis \mathbf{v}_i) is to select: $\hat{\Pi}_{11}^1 \mathbf{v}_1$, $\hat{\Pi}_{11}^1 \mathbf{v}_3$, and $\hat{\Pi}_{11}^1 \mathbf{v}_{12}$. Then each of these vectors needs to be orthonormalized using, for example, a Gram-Schmidt algorithm. We'll use $\hat{\mathbf{u}}$ to denote the vector of the constructed basis after they have been orthonormalized. It's an iterative procedure, before adding a vector to the basis, it needs to be orthonormalized with respect to those already in the basis.

Let's see what this looks like for R_1 . We start by evaluating

$$\begin{aligned} \mathbf{u}_{1,1} &= \hat{\Pi}_{11}^1 \mathbf{v}_1 = \frac{1}{6} \begin{pmatrix} \mathbb{1} + M_2 & S^{-1} + M_1 & S + M_3 & 0 \\ S + M_1 & \mathbb{1} + M_3 & S^{-1} + M_2 & 0 \\ S^{-1} + M_3 & S + M_2 & \mathbb{1} + M_1 & 0 \\ 0 & 0 & 0 & S^{(1)} \end{pmatrix} \mathbf{v}_1 \\ &= \left(\frac{1}{4}, \frac{\sqrt{3}}{12}, 0, -\frac{1}{4}, \frac{\sqrt{3}}{12}, 0, 0, -\frac{\sqrt{3}}{6}, 0, 0, 0, 0 \right) \end{aligned} \quad (9.160)$$

which if we normalise gives

$$\hat{\mathbf{u}}_{1,1} = \left(\frac{1}{2}, \frac{1}{2\sqrt{3}}, 0, -\frac{1}{2}, \frac{1}{2\sqrt{3}}, 0, 0, -\frac{1}{\sqrt{3}}, 0, 0, 0, 0 \right). \quad (9.161)$$

Let's do another one

$$\mathbf{u}_{1,3} \equiv \hat{\Pi}_{11}^1 \mathbf{v}_{12} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = \hat{\mathbf{u}}_{1,3} \quad (9.162)$$

which conveniently is already normalised and orthogonal to $\hat{\mathbf{u}}_{1,1}$. You can similarly generate a third one as

$$\mathbf{u}_{1,2} \equiv \hat{\Pi}_{11}^1 \mathbf{v}_3 \quad \rightarrow \quad \hat{\mathbf{u}}_{1,2} = \left(0, 0, \frac{1}{\sqrt{3}}, 0, 0, \frac{1}{\sqrt{3}}, 0, 0, \frac{1}{\sqrt{3}}, 0, 0, 0 \right) \quad (9.163)$$

where in this case you need to explicitly apply Gram Schmidt to ensure $\hat{\mathbf{u}}_{1,2}$ is normalised and orthogonal to $\hat{\mathbf{u}}_{1,1}$ and $\hat{\mathbf{u}}_{1,3}$. I've given you the answer above but please do work through and check you get that yourself.

The basis for R_2 is simple as its only 1D. For example, we can just do $\hat{\Pi}_{11}^2 \mathbf{v}_1$ to get

$$\mathbf{u}_{2,1} \equiv \hat{\Pi}_{11}^2 \mathbf{v}_1 \quad \rightarrow \quad \hat{\mathbf{u}}_{2,1} = \left(\frac{1}{2\sqrt{3}}, -\frac{1}{2}, 0, \frac{1}{2\sqrt{3}}, \frac{1}{2}, 0, -\frac{1}{\sqrt{3}}, 0, 0, 0, 0, 0 \right). \quad (9.164)$$

Finally we come to the basis for R_3 . This is more subtle. For R_3 , we need to find four pairs of invariant vectors that live in the same invariant subspace. We can do this by creating the first vector using the same procedure as above, i.e. as $\mathbf{u} \equiv \Pi_{11}^{(3)} \mathbf{v}$ for some \mathbf{v} . On normalizing we'll have $\hat{\mathbf{u}} = |3, 1, x\rangle$. Then to find another vector in the same invariant subspace we can take $\mathbf{u}' \equiv \Pi_{21}^{(3)} \hat{\mathbf{u}}$ such that we have

$$\hat{\Pi}_{21}^3 |3, 1, x\rangle = |3, 2, x\rangle. \quad (9.165)$$

This way we can be sure that $\hat{\mathbf{u}}$ and $\hat{\mathbf{u}'}$ leave the same invariant subspace. It's a little long to do but works. I'll leave the fun* of doing so to you.

Putting it all together, we end up with a set of ortho-normal vectors. We can then use these to construct the unitary that transforms into the basis in which R decomposes into irreps:

$$\mathbf{U} = (\hat{\mathbf{u}}_{1,1}, \hat{\mathbf{u}}_{1,2}, \hat{\mathbf{u}}_{1,3}, \hat{\mathbf{u}}_{2,1}, \hat{\mathbf{u}}_{3,1}, \hat{\mathbf{u}}_{3,2}, \hat{\mathbf{u}}_{3,3}, \hat{\mathbf{u}}'_{3,1}, \hat{\mathbf{u}}'_{3,2}, \hat{\mathbf{u}}'_{3,4}, \hat{\mathbf{u}}'_{3,3}) \quad (9.166)$$

Why is this good to know? Well from Schur's lemmas we know that we can use the irrep structure to block diagonalize any operator that commutes with all representations of elements of the group. Thus we see immediately that we can block diagonalize any 12d operator that commutes with $R(g)$ for all g .

Let's look at an example of this. To realistically describe the harmonic modes of the ammonia, a precise parametrization of the elastic constants would be necessary. In general, we cannot express the harmonic force on an atom as the sum of harmonic forces exerted by the other atoms because the harmonic constant for the force between two atoms will be influenced by the presence of the other atoms. However, in the context of this exercise, we can introduce a highly simplified model without fear, which allows us to familiarize ourselves with the symmetry properties. We will assume that the system is simply characterized by two harmonic constants: k_{HH} for the restoring force between two hydrogen atoms and k_{NH} for the force between a hydrogen atom and the nitrogen atom. We have made a strong approximation by assuming that the harmonic force between two atoms is isotropic.

Once the masses and elastic constants are given, we can write the potential energy as follows:

$$\begin{aligned} V(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4) &= \frac{1}{2} k_{HH} [(\mathbf{u}_1 - \mathbf{u}_2)^2 + (\mathbf{u}_1 - \mathbf{u}_3)^2 + (\mathbf{u}_2 - \mathbf{u}_3)^2] \\ &+ \frac{1}{2} k_{NH} [(\mathbf{u}_1 - \mathbf{u}_4)^2 + (\mathbf{u}_2 - \mathbf{u}_4)^2 + (\mathbf{u}_3 - \mathbf{u}_4)^2]. \end{aligned} \quad (9.167)$$

The force acting on a given particle is obtained from the gradient of this potential with respect to the corresponding displacement variable:

$$\mathbf{F}_j = m_j \frac{\partial^2 \mathbf{u}_j}{\partial t^2} = -\frac{\partial V}{\partial \mathbf{u}_j}, \quad (9.168)$$

which allows us to write the equations of motion for the system:

$$\begin{aligned} m_H \frac{\partial^2 \mathbf{u}_1}{\partial t^2} &= -k_{HH}(\mathbf{u}_1 - \mathbf{u}_2) - k_{HH}(\mathbf{u}_1 - \mathbf{u}_3) - k_{NH}(\mathbf{u}_1 - \mathbf{u}_4), \\ m_H \frac{\partial^2 \mathbf{u}_2}{\partial t^2} &= -k_{HH}(\mathbf{u}_2 - \mathbf{u}_1) - k_{HH}(\mathbf{u}_2 - \mathbf{u}_3) - k_{NH}(\mathbf{u}_2 - \mathbf{u}_4), \\ m_H \frac{\partial^2 \mathbf{u}_3}{\partial t^2} &= -k_{HH}(\mathbf{u}_3 - \mathbf{u}_1) - k_{HH}(\mathbf{u}_3 - \mathbf{u}_2) - k_{NH}(\mathbf{u}_3 - \mathbf{u}_4), \\ m_N \frac{\partial^2 \mathbf{u}_4}{\partial t^2} &= -k_{NH}(\mathbf{u}_4 - \mathbf{u}_1) - k_{NH}(\mathbf{u}_4 - \mathbf{u}_2) - k_{NH}(\mathbf{u}_4 - \mathbf{u}_3). \end{aligned} \quad (9.169)$$

In this simplified notation, it is implied that the variables $\mathbf{u}_j(t)$ depend on time. Such a system of coupled oscillators is characterized by "normal modes." A normal mode is a specific solution to the equations (9.169) where the 12 degrees of freedom depend on time according to the same harmonic law:

$$\mathbf{u}_j(t) = \mathbf{u}_j^{(0)} \sin(\omega t). \quad (9.170)$$

Here, $\mathbf{u}_j^{(0)}$ is a constant vector. By substituting the solution (9.170) into the set of equations (9.169), we obtain:

$$\begin{aligned} \omega^2 \mathbf{u}_1^{(0)} &= \frac{1}{m_H} \left[k_{HH}(\mathbf{u}_1^{(0)} - \mathbf{u}_2^{(0)}) + k_{HH}(\mathbf{u}_1^{(0)} - \mathbf{u}_3^{(0)}) + k_{NH}(\mathbf{u}_1^{(0)} - \mathbf{u}_4^{(0)}) \right], \\ \omega^2 \mathbf{u}_2^{(0)} &= \frac{1}{m_H} \left[k_{HH}(\mathbf{u}_2^{(0)} - \mathbf{u}_1^{(0)}) + k_{HH}(\mathbf{u}_2^{(0)} - \mathbf{u}_3^{(0)}) + k_{NH}(\mathbf{u}_2^{(0)} - \mathbf{u}_4^{(0)}) \right], \\ \omega^2 \mathbf{u}_3^{(0)} &= \frac{1}{m_H} \left[k_{HH}(\mathbf{u}_3^{(0)} - \mathbf{u}_1^{(0)}) + k_{HH}(\mathbf{u}_3^{(0)} - \mathbf{u}_2^{(0)}) + k_{NH}(\mathbf{u}_3^{(0)} - \mathbf{u}_4^{(0)}) \right], \\ \omega^2 \mathbf{u}_4^{(0)} &= \frac{1}{m_N} \left[k_{NH}(\mathbf{u}_4^{(0)} - \mathbf{u}_1^{(0)}) + k_{NH}(\mathbf{u}_4^{(0)} - \mathbf{u}_2^{(0)}) + k_{NH}(\mathbf{u}_4^{(0)} - \mathbf{u}_3^{(0)}) \right]. \end{aligned} \quad (9.171)$$

Subsequently, to simplify the notation, we will represent $\mathbf{u}_j^{(0)}$ as simply \mathbf{u}_j . We can define the vector in the 12-dimensional space as:

$$\mathbf{u} = (\mathbf{u}_1; \mathbf{u}_2; \mathbf{u}_3; \mathbf{u}_4). \quad (9.172)$$

The system of equations (9.171) can be expressed in the compact form:

$$A\mathbf{u} = \omega^2 \mathbf{u}, \quad (9.173)$$

Here, A is the dynamic matrix of the system, obtained straightforwardly from the form (9.171) of the equation of motion and takes the form:

$$A = \begin{pmatrix} A_{DH} & A_{HH} & A_{HH} & A_{HN} \\ A_{HH} & A_{DH} & A_{HH} & A_{HN} \\ A_{HH} & A_{HH} & A_{DH} & A_{HN} \\ -A_{DN} & -A_{DN} & -A_{DN} & 3A_{DN} \end{pmatrix} \quad (9.174)$$

where we have defined $A_{DH} = a_{DH}\mathbf{1}$, $A_{HH} = a_{HH}\mathbf{1}$, $A_{HN} = a_{HN}\mathbf{1}$, $A_{DN} = a_{DN}\mathbf{1}$ are 3×3 matrices multiples of the identity and $a_{DH} = (2k_{HH} + k_{HN})/m_H$, $a_{HH} = -k_{HH}/m_H$, $a_{HN} = -k_{HN}/m_H$, $a_{DN} = k_{HN}/m_N$.

Exercise: Show this!

To find the normal modes of the molecule we need to solve the eigenvalue problem in Eq. (9.173). That is, we want to diagonalize A . We can use our new found knowledge of the irreps of R to do this. That is, the matrix $\tilde{A} = U^\dagger AU$ (where U is the basis change we worked so hard to find earlier in Eq. (9.166)) is block-diagonal:

$$\tilde{A} = \begin{pmatrix} \tilde{A}_{1 \times 1} & & & \\ & \tilde{A}_{2 \times 2} & & \\ & & \boxed{\tilde{A}_{1 \times 1}} & \\ \hline & & & \tilde{A}_{3 \times 3} \\ & & & & \tilde{A}_{1 \times 1} \\ & & & & & \tilde{A}_{3 \times 3} \\ & & & & & & \tilde{A}_{1 \times 1} \end{pmatrix} \quad (9.175)$$

with :

$$\tilde{A}_{1 \times 1} = \frac{3k_{HH} + k_{HN}}{m_H} \quad (9.176)$$

$$\tilde{A}_{2 \times 2} = \begin{pmatrix} \frac{k_{HN}}{m_H} & -\frac{\sqrt{3}k_{HN}}{m_H} \\ -\frac{\sqrt{3}k_{HN}}{m_N} & \frac{3k_{HN}}{m_N} \end{pmatrix} \quad (9.177)$$

$$\tilde{A}_{3 \times 3} = \begin{pmatrix} \frac{3k_{HH} + 5k_{HN}}{5m_H} & \frac{6k_{HH}}{5m_H} & -\frac{2\sqrt{\frac{3}{5}}k_{HN}}{m_H} \\ \frac{6k_{HH}}{5m_H} & \frac{12k_{HH} + 5k_{HN}}{5m_H} & \frac{\sqrt{\frac{3}{5}}k_{HN}}{m_H} \\ -\frac{2\sqrt{\frac{3}{5}}k_{HN}}{m_N} & \frac{\sqrt{\frac{3}{5}}k_{HN}}{m_N} & \frac{3k_{HN}}{m_N} \end{pmatrix} \quad (9.178)$$

The rows in the matrix \tilde{A} separate the different invariant subspaces R_i . **Exercise: Show this!**

Thus we see that the use of group theory has reduced a problem consisting of diagonalizing a 12×12 matrix to a problem requiring the diagonalization of a 2×2 matrix and a 3×3 matrix, which is much simpler!

Now we can use some physical arguments to intuitively understand what will happen if we fully solve the problem. For example, we noticed that the system is invariant under translation, so a translation along z should not cost any energy. To see this, let's look in the subspace related to Γ_1 and search for a null mode. Clearly, $\tilde{A}_{1 \times 1}$ is not zero, so $\tilde{A}_{2 \times 2}$ must have a

zero eigenvalue. Moreover, by cleverly combining $\hat{u}_{1,2}$ and $\hat{u}_{1,3}$, we can generate the vector $(0, 0, 1/2, 0, 0, 1/2, 0, 0, 1/2, 0, 0, 1/2)$, which is effectively a translation of each atom along z . To find the other two null modes related to translations along x and y , we need to look in Γ_3 . We will find that $\hat{A}_{3 \times 3}$ must also have a zero eigenvalue.

Figure 9.13: Credit: L'heure est grave

Chapter 10

Lie Algebras/Angular momentum

This chapter sits between an introduction to Lie Algebra and a recap of angular momentum and the addition of angular momentum. For those of you who are already comfortable with all things angular momentum this chapter is intended to expose you to the deep mathematics underlying these topics to provide you with a fresh perspective and equip you for future forays into the world of Lie Algebras. That said, for those of you who are fed up of group theory by this point and/or are perhaps a little rusty when it comes to the addition of angular momentum you should be able to largely ignore the group theory and reason your way through these topics based on physical intuition.

There are two main topics we will cover. Firstly, we will introduce the Lie algebras by looking at the example of rotations. In doing so, we will rediscover a lot of what you already know about angular momentum (but frame it slightly different language). Secondly, we will discuss the addition of angular momentum and the relationship between this and the irreducible representations of tensor product representations of rotation groups. In both parts I will closely follow Group Theory in a Nutshell for Physicists (GTNFP). I'm going to copy the most relevant sections here for your convenience (making only minor tweaks) but you might prefer to go and read directly from there.

10.1 Intro to Lie Algebras via Rotations. An trimmed copy of I.3 in GTNFP

10.1.1 A little bit at a time

The Norwegian physicist Marius Sophus Lie (1842–1899) had the almost childishly obvious but brilliant idea that to rotate through, say, 29° , you could just as well rotate through a zillionth of a degree and repeat the process 29 zillion times. To study rotations, it suffices to study rotation through infinitesimal angles. Shades of Newton and Leibniz! A rotation through a finite angle can always be obtained by performing infinitesimal rotations repeatedly. As is typical with many profound statements in physics and mathematics, Lie's idea is astonishingly simple. Replace the proverb “Never put off until tomorrow what you have to do today” by “Do what you have to do a little bit at a time.”

A rotation through an infinitesimal angle θ is almost the identity I , that is, no rotation at all, and so can be written as

$$R(\theta) \simeq I + A \tag{10.1}$$

Here A denotes some infinitesimal matrix of order θ . The neglected terms in (10.1) are of order θ^2 and smaller.

Let us imagine Lie saying to himself, “Pretend that I slept through trigonometry class and I don’t know anything about how rotation matrices look. Instead, I will define rotations as the set of linear transformations on 2-component objects $\mathbf{u}' = R\mathbf{u}$ and $\mathbf{v}' = R\mathbf{v}$ that leave $\mathbf{u}^T \cdot \mathbf{v}$ invariant. I will impose

$$R^T R = I \quad (10.2)$$

and derive (10.1). But according to my brilliant idea, it suffices to solve this condition for rotations infinitesimally close to the identity.”

Following Lie, we plug $R \simeq I + A$ into (10.2). Since by assumption A^2 , being of order θ^2 , can be neglected relative to A , we have

$$R^T R \simeq (I + A^T)(I + A) \simeq (I + A^T + A) = I \quad (10.3)$$

Thus, this requires $A^T = -A$, namely, that A must be antisymmetric.

But there is basically only one 2×2 antisymmetric matrix:

$$\mathcal{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad (10.4)$$

In other words, the solution of $A^T = -A$ is $A = \theta \mathcal{J}$ for some real number θ . Thus, rotations close to the identity have the form

$$R = I + \theta \mathcal{J} + O(\theta^2) = \begin{pmatrix} 1 & \theta \\ -\theta & 1 \end{pmatrix} + O(\theta^2) \quad (10.5)$$

The antisymmetric matrix \mathcal{J} is known as the generator of the rotation group. We obtain, without knowing any trigonometry, that under an infinitesimal rotation, $x \rightarrow x' \simeq x + \theta y$, and $y \rightarrow y' \simeq -\theta x + y$, which is of course consistent with (10.5). We could also obtain this result by drawing an elementary geometrical figure involving infinitesimal angles.

Now recall the identity $e^x = \lim_{N \rightarrow \infty} (1 + \frac{x}{N})^N$ (which you can easily prove by differentiating both sides). Then, for a finite (that is, not infinitesimal) angle θ , we have

$$R(\theta) = \lim_{N \rightarrow \infty} \left(R\left(\frac{\theta}{N}\right) \right)^N = \lim_{N \rightarrow \infty} \left(1 + \frac{\theta \mathcal{J}}{N} \right)^N = e^{\theta \mathcal{J}} \quad (10.6)$$

The first equality represents Lie’s profound idea: we cut up the given noninfinitesimal angle θ into N pieces so that θ/N is infinitesimal for N large enough and perform the infinitesimal rotation N times. The second equality is just (10.5). For the last equality, we use the identity just mentioned, which amounts to the definition of the exponential.

As an alternative but of course equivalent path to our result, simply assert that we have every right, to leading order, to write $R\left(\frac{\theta}{N}\right) = 1 + \frac{\theta \mathcal{J}}{N} \simeq e^{\frac{\theta \mathcal{J}}{N}}$. Thus

$$R(\theta) = \lim_{N \rightarrow \infty} \left(R\left(\frac{\theta}{N}\right) \right)^N = \lim_{N \rightarrow \infty} \left(e^{\frac{\theta \mathcal{J}}{N}} \right)^N = e^{\theta \mathcal{J}} \quad (10.7)$$

In calculus, we learned about the Taylor or power series. Taylor said that if we gave him all the derivatives of a function $f(x)$ at $x = 0$ (say), he could construct the function. In contrast, Lie

said that, thanks to the multiplicative group structure, he only needs the first derivative of the group element $R(\theta)$ near the identity. Indeed, we recognize that \mathcal{J} is just $\frac{dR(\theta)}{d\theta}|_{\theta=0}$. The reason that Lie needs so much less is of course that the group structure is highly restrictive.

Finally, we can check that the formula $R(\theta) = e^{\theta\mathcal{J}}$ reproduces (10.5) for any value of θ . We simply note that $\mathcal{J}^2 = -I$ and separate the exponential series, using Taylor's idea, into even and odd powers of \mathcal{J} :

$$e^{\theta\mathcal{J}} = \sum_{n=0}^{\infty} \frac{\theta^n \mathcal{J}^n}{n!} = \left(\sum_{k=0}^{\infty} \frac{(-1)^k \theta^{2k}}{(2k)!} \right) I + \left(\sum_{k=0}^{\infty} \frac{(-1)^k \theta^{2k+1}}{(2k+1)!} \right) \mathcal{J} \quad (10.8)$$

which simplifies to

$$e^{\theta\mathcal{J}} = \cos \theta I + \sin \theta \mathcal{J} = \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \quad (10.9)$$

which is the familiar rotation matrix in 2D that you probably derived for yourself back in high school using trigonometry. Note that this works, because \mathcal{J} plays the same role as i in Euler's identity $e^{i\theta} = \cos \theta + i \sin \theta$.

10.1.2 Lie in higher dimensions

The power of Lie now shines through when we want to work out rotations in higher-dimensional spaces. All we have to do is satisfy the two conditions $R^T R = I$ and $\det R = 1$. Lie shows us that the first condition, $R^T R = I$, is solved immediately by writing $R \simeq I + A$ and requiring $A = -A^T$, namely, that A be antisymmetric. That's it. We could be in a zillion-dimensional space, but still, the rotation group is fixed by requiring A to be antisymmetric.

But it is very easy to write down all possible antisymmetric N -by- N matrices! For $N = 2$, there is only one, namely, the \mathcal{J} introduced earlier. For $N = 3$, there are basically three of them:

$$\mathcal{J}_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad \mathcal{J}_y = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mathcal{J}_z = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad (10.10)$$

Any 3-by-3 antisymmetric matrix can be written as $A = \theta_x \mathcal{J}_x + \theta_y \mathcal{J}_y + \theta_z \mathcal{J}_z$, with three real numbers θ_x , θ_y , and θ_z . The three 3-by-3 antisymmetric matrices \mathcal{J}_x , \mathcal{J}_y , \mathcal{J}_z are known as generators. They generate rotations, but are of course not to be confused with rotations, which are by definition 3-by-3 orthogonal matrices with determinant equal to 1.

One upshot of this whole discussion is that any 3-dimensional rotation (not necessarily infinitesimal) can be written as

$$R(\theta) = e^{\theta_x \mathcal{J}_x + \theta_y \mathcal{J}_y + \theta_z \mathcal{J}_z} = e^{\sum_i \theta_i \mathcal{J}_i} \quad (10.11)$$

(with $i = x, y, z$) and is thus characterized by three real numbers θ_x , θ_y , and θ_z . As I said, those readers who have suffered through the rotation of a rigid body in a course on mechanics surely would appreciate the simplicity of studying the generators of infinitesimal rotations and then simply exponentiating them.

To mathematicians, physicists often appear to use weird notations. There is not an i in sight, yet physicists are going to stick one in now. If you have studied quantum mechanics, you know that the generators \mathcal{J} of rotation studied here are related to angular momentum operators. You would also know that in quantum mechanics observables are represented by hermitean operators

or matrices. In contrast, in our discussion, the \mathcal{J} s come out naturally as real antisymmetric matrices and are thus antihermitean. To make them hermitean, we multiply them by some multiples of the imaginary unit i . Thus, define

$$J_x \equiv -i\mathcal{J}_x, \quad J_y \equiv -i\mathcal{J}_y, \quad J_z \equiv -i\mathcal{J}_z \quad (10.12)$$

and write a general rotation as

$$R(\theta) = e^{i\sum_i \theta_i J_i} = e^{i\theta \cdot J} \quad (10.13)$$

Treating the three real numbers θ_j and the three matrices J_j as two 3-dimensional vectors.

Exercise: Write down the generators of rotations in 4-dimensional space. At least count how many there are.

10.1.3 Structure constants

In general, rotations do not commute. Following Lie, we could try to capture this essence of group multiplication by focusing on infinitesimal rotations.

Let $R \simeq I + A$ be an infinitesimal rotation. For an arbitrary rotation R' , consider

$$RR'R^{-1} \simeq (I + A)R'(I - A) \simeq R' + AR' - R'A \quad (10.14)$$

(where we have consistently ignored terms of order A^2). If rotations commute, then $RR'R^{-1}$ would be equal to R' . Thus, the extent to which this is not equal to R' measures the lack of commutativity. Now, suppose R' is also an infinitesimal rotation $R' \simeq I + B$. Then

$$RR'R^{-1} \simeq I + B + AB - BA \quad (10.15)$$

which differs from $R' \simeq I + B$ by the matrix

$$[A, B] \equiv AB - BA, \quad (10.16)$$

known as the commutator between A and B .

For $SO(3)$, for example, A is a linear combination of the J s, which we shall call the generators of the Lie algebra of $SO(3)$. Thus, we can write

$$A = i\sum_i \theta_i J_i \quad \text{and similarly} \quad B = i\sum_j \theta'_j J_j. \quad (10.17)$$

Hence

$$[A, B] = i^2 \sum_{ij} \theta_i \theta'_j [J_i, J_j], \quad (10.18)$$

and so it suffices to calculate the commutators $[J_i, J_j]$ once and for all.

Lie's great insight is that the preceding discussion holds for any group whose elements $g(\theta_1, \theta_2, \dots)$ are labeled by a set of continuous parameters such that $g(0, 0, \dots)$ is the identity I . (For example, the continuous parameters would be the angles θ_i , $i = 1, 2, 3$ in the case of $SO(3)$.) For these groups, now known as Lie groups, this is what you do in four easy steps:

1. Expand the group elements around the identity by letting the continuous parameters go to zero: $g \simeq I + A$.
2. Write $A = i\sum_a \theta_a T_a$ as a linear combination of the generators T_a as determined by the nature of the group.

3. Pick two group elements near the identity: $g_1 \simeq I + A$ and $g_2 \simeq I + B$. Then

$$g_1 g_2 g_1^{-1} \simeq I + B + [A, I + B] \simeq I + B + [A, B].$$

The commutator $[A, B]$ captures the essence of the group near the identity.

4. As in step 2, we can write $B = i \sum_b \theta'_b T_b$ as a linear combination of the generators T_b . Similarly, we can write $[A, B]$ as a linear combination of the generators T_c . (We know this because, for g_1 and g_2 near the identity, $g_1 g_2 g_1^{-1}$ is also near the identity.) Plugging in, we then arrive at the analog of (10.18) for any continuous group, namely, the commutation relations

$$[T_a, T_b] = i f_{abc} T_c \quad (10.19)$$

The commutator between any two generators can be written as a linear combination of the generators.

The commutation relations between the generators define a *Lie algebra*, with f_{abc} referred to as the *structure constants* of the algebra.

For example, for $SO(3)$ we have that

$$[J_x, J_y] = i J_z, \quad [J_y, J_z] = i J_x, \quad [J_z, J_x] = i J_y. \quad (10.20)$$

Therefore, we have that $f_{abc} = \epsilon_{abc}$ where ϵ_{abc} is the Levi-Civita symbol. These coefficients, i.e., the statement that $f_{abc} = \epsilon_{abc}$, can thus be used to identify the algebra of $SO(3)$.

Before we move on, let's just take a step back for a second and summarise the jargon we've introduced implicitly introduced in the previous sections.

- A *Lie algebra* \mathfrak{g} is a linear space spanned by linear combinations $\sum_i \theta_i \mathcal{J}_i$ of the generators of the associated *Lie group* G .
- In particular, as Lie groups are differentiable, it is always possible to write an element g of a Lie group G as the exponential of an element J of the corresponding Lie Algebra \mathfrak{g} . That is,

$$\mathfrak{g} = \{J | e^{iJ} \in G\}. \quad (10.21)$$

- The commutation relations of the generators J_j (i.e., a basis for \mathfrak{g}) are the *structure constants* of the group and can be used to identify the Lie Algebra \mathfrak{g} (and thereby the corresponding Lie group G).

In practise, similarly to the case with groups, as physicists we are often more comfortable working with representations of the generators (i.e, a basis) of the Lie Algebra (or just *a representation of the Lie algebra*) than with the Lie Algebra itself.

So, what does it mean to represent the Lie algebra? It means that we are to find matrices such that the commutation relations that define an algebra are satisfied.

In fact, for $SO(2)$ and $SO(3)$ in the proceeding section, we already wrote down representations of these algebras, namely a 2D representation of $SO(2)$ and then a 3D representation of $SO(3)$,

before identifying the structure constants that more abstractly identify the algebra. For example, in the case of $SO(3)$, three matrices J_x, J_y , and J_z such that the commutation relations are satisfied are specified in (10.20).

But note, as with groups, there are multiple possible representations possible for an algebra. We will explore some alternative higher dimensional representations of $SO(3)$ in Section 10.2.

A word of clarification. Strictly speaking, we should distinguish the matrices representing the abstract operators J_x, J_y , and J_z from the abstract operators (that satisfy $f_{abc} = \epsilon_{abc}$) themselves. But it would only clutter up things if we introduce more notation. Instead, we follow the physicist's sloppy practice of using J_x, J_y , and J_z also to denote the matrices representing the abstract operators J_x, J_y , and J_z . Similarly, the Lie Algebra and Lie Group as often represented using lower case mathfrak (e.g., $\mathfrak{so}(3)$) and upper case (e.g., $SO(3)$) letters respectively. But again, when it is unambiguous we'll just use upper case letters for both cases.

A note on the relation between representations of Lie groups and Lie algebras...
 You may well have noticed that as rotations are given by exponentials of linear combinations of the J s, exponentiating the representations of the $SO(3)$ algebra lead to matrices representing the $SO(3)$ rotation group... or, turning this around, if we take a single parameter subgroup of $SO(3)$, e.g., e^{-iJ_x} and look at its derivative at $\theta = 0$ we will get a representation of one of the basis elements of the algebra, e.g.,

$$\frac{d}{d\theta} e^{-iJ_x} \Big|_{\theta=0} = -iJ_x. \quad (10.22)$$

Or even more explicitly any rotation in 3D can be decomposed into rotations around the x , y and z axes respectively:

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}, R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (10.23)$$

and we can quickly check that differentiating each of these does give back the generators calculated earlier. For example,

$$\frac{d}{d\theta} R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = -iJ_x. \quad (10.24)$$

In fact, you can always get a representation of an algebra in this manner from a representation of the group.

Concretely, let G be a matrix Lie group with Lie algebra \mathfrak{g} . If R is a representation of G on V , then there exists a unique representation r of \mathfrak{g} on V given by

$$r(X) = \frac{d}{d\theta} (R(e^{\theta X})) \Big|_{\theta=0}, \quad \text{for all } X \in \mathfrak{g}.$$

We call r the representation of \mathfrak{g} induced by R .

However, the converse is not always true. You do not always get a representation of the group on exponentiation. You do for most groups - namely simply connected groups. But there are representations of non-simply connected groups where this is not strictly true. We're not going to dive down this conceptually fiddly rabbit hole in this course.

This is non-examinable. For completeness we note that a mathematician might define a Lie algebra more abstractly as a vector space \mathfrak{g} over a field $\mathbb{F} \in \{\mathbb{C}, \mathbb{R}\}$ (for us usually over \mathbb{C}) with a *Lie bracket* $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, which satisfies the following axioms holding for all $X_1, X_2, X_3 \in \mathfrak{g}$ and $a, b \in \mathbb{F}$,

1. *Antisymmetry*: $[X_1, X_2] = -[X_2, X_1]$.
2. *Bilinearity*: $[aX_1 + bX_2, X_3] = a[X_1, X_3] + b[X_2, X_3]$.
3. *Jacobi Identity*: $[[X_1, X_2], X_3] + [[X_2, X_3], X_1] + [[X_3, X_1], X_2] = 0$.

The standard commutator $[A, B] = AB - BA$ satisfies these properties and is generally the only Lie bracket that will matter in most quantum settings.

10.1.4 Rotations in Higher Dimensions

With your experience with (10.10) and (10.6), it is now a cinch for you to generalize and write down a complete set of antisymmetric N -by- N matrices.

Start with an N -by- N matrix with 0 everywhere. Stick a 1 into the m -th row and n -th column; due to antisymmetry, you are obliged to put a -1 into the n -th row and m -th column. Call this antisymmetric matrix $J_{(mn)}$. We put the subscripts (mn) in parentheses to emphasize that (mn) labels the matrix. They are not indices to tell us which element of the matrix we are talking about. As explained before, physicists like Hermite a lot and throw in a $-i$ to define the hermitean matrices $J_{(mn)} = -iJ_{(mn)}$. Explicitly,

$$(J_{(mn)})^{ij} = -i(\delta^{mi}\delta^{nj} - \delta^{mj}\delta^{ni}). \quad (10.25)$$

To repeat, in the symbol $(J_{(mn)})^{ij}$, which we will often write as $J_{(mn)}^{ij}$ for short, the indices i and j indicate, respectively, the row and column of the entry $(J_{(mn)})^{ij}$ of the matrix $J_{(mn)}$, while the indices m and n , which I put in parentheses for pedagogical clarity, indicate which matrix we are talking about. The first index m on $J_{(mn)}$ can take on N values, and then the second index n can take on only $(N - 1)$ values, since, evidently, $J_{(nn)} = 0$. Also, since $J_{(nm)} = -J_{(mn)}$, we require $m > n$ to avoid double counting. Thus, there are only $\frac{1}{2}N(N - 1)$ real antisymmetric N -by- N matrices $J_{(mn)}$. The Kronecker deltas in (10.25) merely say what we said in words in the preceding paragraph.

As before, an infinitesimal rotation is given by $R \simeq I + A$ with the most general A a linear combination of the $J_{(mn)}$ s: $A = i \sum_{m,n} \theta_{(mn)} J_{(mn)}$, where the antisymmetric coefficients $\theta_{(mn)} = -\theta_{(nm)}$ denote $\frac{1}{2}N(N - 1)$ generalized angles. (As a check, for $N = 2$ and 3 , $\frac{1}{2}N(N - 1)$ equals 1 and 3, respectively.) The matrices $J_{(mn)}$ are the generators of the group $SO(N)$.

Our next task is to work out the Lie algebra for $SO(N)$, namely, the commutators between the $J_{(mn)}$ s. You could simply plug in (10.25) and chug away. But a more elegant approach is to work out $SO(4)$ as an inspiration for the general case. First, $[J_{(12)}, J_{(34)}] = 0$, as you might expect,

since rotations in the (1-2) plane and in the (3-4) plane are like gangsters operating on different turfs. Next, we tackle $[J_{(23)}, J_{(31)}]$. Notice that the action takes place entirely in the $SO(3)$ subgroup of $SO(4)$, and so we already know the answer: $[J_{(23)}, J_{(31)}] = [J_x, J_y] = iJ_z = iJ_{(12)}$. These two examples, together with antisymmetry $J_{(mn)} = -J_{(nm)}$, in fact take care of all possible cases. In the commutator $[J_{(mn)}, J_{(pq)}]$, there are three possibilities for the index sets (mn) and (pq) : (i) they have no integer in common, (ii) they have one integer in common, or (iii) they have two integers in common. The commutator vanishes in cases (i) and (iii), for trivial (but different) reasons. In case (ii), suppose $m = p$ with no loss of generality, then the commutator is equal to $iJ_{(nq)}$.

We obtain, for any N ,

$$[J_{(mn)}, J_{(pq)}] = i(\delta_{mp}J_{(nq)} + \delta_{nq}J_{(mp)} - \delta_{np}J_{(mq)} - \delta_{mq}J_{(np)}) \quad (10.26)$$

This may look rather involved to the uninitiated, but in fact it simply states in mathematical symbols the last three sentences of the preceding paragraph. First, on the right-hand side, a linear combination of the J s (as required by the general argument above) is completely fixed by the first term by noting that the left-hand side is antisymmetric under three separate interchanges: $m \leftrightarrow n$, $p \leftrightarrow q$, and $(mn) \leftrightarrow (pq)$. Next, all those Kronecker deltas just say that if the two sets (mn) and (pq) have no integer in common, then the commutator vanishes. If they do have an integer in common, simply “cross off” that integer. For example, $[J_{(12)}, J_{(14)}] = iJ_{(24)}$ and $[J_{(23)}, J_{(31)}] = -iJ_{(21)} = iJ_{(12)}$.

10.2 Lie Algebra of $SO(3)$ and Ladder Operators: Creation and Annihilation (A trimmed copy of (IV.2 of GTNFP))

In this section we will consider higher dimensional representations of $SO(3)$ and then look into how to find its irreducible representations. This should, similarly to the previous section, feel very familiar. You were essentially already shown how to do this when you were first introduced to quantum angular momentum! However, walking through this carefully will give us the tools we need in the next section to tackle the irreducible representations of tensor product reps of $SO(3)$ more carefully (i.e., re-study the additional of angular momentum).

10.2.1 Ladder operators are useful (a recap of stuff you’ve seen before)

Since the three generators J_x , J_y , and J_z do not commute, they cannot be simultaneously diagonalized, as explained in the review of linear algebra. But we can diagonalize one of them. Choose J_z , and work in a basis in which J_z is diagonal.

The move that breaks the problem wide open should be very familiar to you: it is akin to going from the 2-dimensional coordinates x, y to the complex variable $z = x + iy$, $z^* = x - iy$, and from a transversely polarized electromagnetic wave to a circularly polarized electromagnetic wave. Define $J_{\pm} \equiv J_x \pm iJ_y$. Then we can rewrite (10.20) as

$$[J_z, J_{\pm}] = \pm J_{\pm}, \quad [J_+, J_-] = 2J_z. \quad (10.27)$$

Write the eigenvector of J_z with eigenvalue m as $|m\rangle$; in other words,

$$J_z|m\rangle = m|m\rangle. \quad (10.28)$$

Since J_z is hermitean, m is a real number. What we are doing is going to a basis in which J_z is diagonal; according to (10.27), J_{\pm} cannot be diagonal in this basis. Now consider the state $J_+|m\rangle$ and act on it with J_z :

$$J_z J_+|m\rangle = (J_+ J_z + [J_z, J_+])|m\rangle = (J_+ J_z + J_+)|m\rangle = (m+1)J_+|m\rangle, \quad (10.29)$$

where the second equality follows from (10.27). (Henceforth, we will be using (10.27) repeatedly without bothering to refer to it.)

Thus, $J_+|m\rangle$ is an eigenvector (or eigenstate; these terms are used interchangeably) of J_z with eigenvalue $m+1$. Hence, by the definition of $|m\rangle$, the state $J_+|m\rangle$ must be equal to the state $|m+1\rangle$ multiplied by some normalization constant; in other words, we have

$$J_+|m\rangle = c_{m+1}|m+1\rangle, \quad (10.30)$$

with the complex number c_{m+1} to be determined. Similarly,

$$J_z J_-|m\rangle = (J_- J_z + [J_z, J_-])|m\rangle = (J_- J_z - J_-)|m\rangle = (m-1)J_-|m\rangle, \quad (10.31)$$

from which we conclude that

$$J_-|m\rangle = b_{m-1}|m-1\rangle, \quad (10.32)$$

with some other unknown normalization constant.

It is very helpful to think of the states $\dots, |m-1\rangle, |m\rangle, |m+1\rangle, \dots$ as corresponding to rungs on a ladder. The result $J_+|m\rangle = c_{m+1}|m+1\rangle$ tells us that we can think of J_+ as a "raising operator" that enables us to climb up one rung on the ladder, going from $|m\rangle$ to $|m+1\rangle$. Similarly, the result $J_-|m\rangle = b_{m-1}|m-1\rangle$ tells us to think of J_- as a "lowering operator" that enables us to climb down one rung on the ladder. Collectively, J_{\pm} are referred to as ladder operators.

To relate b_m to c_m , we invoke the hermiticity of J_x, J_y , and J_z , which implies that

$$(J_+)^{\dagger} = (J_x + iJ_y)^{\dagger} = J_x - iJ_y = J_-.$$

Multiplying $J_+|m\rangle = c_{m+1}|m+1\rangle$ from the left by $\langle m+1|$ and normalizing the states by $\langle m|m\rangle = 1$, we obtain

$$\langle m+1|J_+|m\rangle = c_{m+1}.$$

Complex conjugating this gives us $c_{m+1}^* = \langle m|J_-|m+1\rangle = b_m$, that is, $b_{m-1} = c_m^*$, so that we can write

$$J_-|m\rangle = c_m^*|m-1\rangle.$$

Acting on this with J_+ gives

$$J_+ J_-|m\rangle = c_m^* J_+|m-1\rangle = |c_m|^2|m\rangle.$$

Similarly, acting with $J_- J_+$ on $|m\rangle$ gives

$$J_- J_+|m\rangle = c_{m+1}|m+1\rangle \implies |c_{m+1}|^2|m\rangle.$$

Since we know that the representation is finite dimensional, the ladder must terminate, that is, there must be a top rung. So, call the maximum value of m by j . At this stage, all we know is that j is a real number. (Note that we have not assumed that m is an integer.) Thus, there is a state $|j\rangle$ such that $J_+|j\rangle = 0$. It corresponds to the top rung of the ladder.

At this point, we have only used the first part of (10.27). Now we use the second half:

$$\langle j|J_-J_+|j\rangle = \langle j|J_+J_- - 2J_z|j\rangle = |c_j|^2 - 2j,$$

thus determining $|c_j|^2 = 2j$. Furthermore,

$$2m = \langle m|2J_z|m\rangle = \langle m|[J_+, J_-]|m\rangle = \langle m|(J_+J_- - J_-J_+)|m\rangle = |c_m|^2 - |c_{m+1}|^2.$$

We obtain a recursion relation

$$|c_m|^2 = |c_{m+1}|^2 + 2m,$$

which, together with $|c_j|^2 = 2j$, allows us to determine the unknown $|c_m|$. Here we go:

$$|c_{j-1}|^2 = |c_j|^2 + 2(j-1) = 2(2j-1),$$

then

$$|c_{j-2}|^2 = |c_{j-1}|^2 + 2(j-2) = 2(3j-1-2),$$

and eventually

$$|c_{j-s}|^2 = 2((s+1)j - \sum_{i=1}^s i).$$

Recall the Gauss formula $\sum_{i=1}^s i = \frac{1}{2}s(s+1)$, and obtain

$$|c_{j-s}|^2 = 2((s+1)j - \frac{1}{2}s(s+1)) = (s+1)(2j-s).$$

We keep climbing down the ladder, increasing s by 1 at each step. When $s = 2j$, we see that c_{-j} vanishes. We have reached the bottom of the ladder. More explicitly, we have

$$J_-|-j\rangle = c_{-j}^*|-j-1\rangle = 0,$$

according to what we just derived. The minimum value of m is $-j$. Since s counts the number of rungs climbed down, it is necessarily an integer, and thus the condition $s = 2j$ that the ladder terminates implies that j is either an integer or a half-integer, depending on whether s is even or odd. If the ladder terminates, then we have the set of states $|-j\rangle, |-j+1\rangle, \dots, |j-1\rangle, |j\rangle$, which totals $2j+1$ states.

For example, for $j = 2$, these states are $|-2\rangle, |-1\rangle, |0\rangle, |1\rangle, |2\rangle$. Starting from $|2\rangle$, we apply J_- four times to reach $|-2\rangle$. (We will do this explicitly later in this chapter.) To emphasize the dependence on j , we sometimes write the kets $|m\rangle$ as $|j, m\rangle$. Notice that the ladder is symmetric under $|m\rangle \rightarrow |-m\rangle$, a symmetry that can be traced to the invariance of the algebra in (10.20) under $J_x \rightarrow J_x, J_y \rightarrow -J_y$, and $J_z \rightarrow -J_z$ (namely, a rotation through π around the x -axis).

Mysterious Appearance of the Half-Integers. But what about the representations of the algebra corresponding to $j =$ a half-integer? For example, for $j = \frac{1}{2}$, we have a $2 \cdot \frac{1}{2} + 1 = 2$ -dimensional representation consisting of the states $|-\frac{1}{2}\rangle$ and $|\frac{1}{2}\rangle$. We climb down from $|\frac{1}{2}\rangle$ to $|-\frac{1}{2}\rangle$ in one step. Certainly no sight of a 2-dimensional representation in chapter I.3! The mystery of the $j = \frac{1}{2}$ representation will be resolved in chapter IV.5 when we discuss $SU(2)$, but let's not be coy about it and keep the reader in suspense. I trust that most readers have heard that it describes the electron spin. We did not go looking for the peculiar number, it came looking for us.

It should not escape your notice that as a by-product of requiring the ladder to terminate, we have also determined $|c_m|^2$. Indeed, setting $s = j - m$, we had $|c_m|^2 = (j+m)(j-m+1)$. Recalling the definition of c_m , we obtain

$$J_+|m\rangle = c_{m+1}|m+1\rangle = \sqrt{(j+1+m)(j-m)}|m+1\rangle. \quad (10.33)$$

and

$$J_-|m\rangle = c_m^*|m-1\rangle = \sqrt{(j+1-m)(j+m)}|m-1\rangle. \quad (10.34)$$

As a mild check on the arithmetic, indeed $J_+|j\rangle = 0$ and $J_-|-j\rangle = 0$. You might also have noticed that, quite rightly, the phase of c_m is not determined, since it is completely up to us to choose the relative phase of the kets $|m\rangle$ and $|m-1\rangle$. Beware that different authors choose differently. I simply take c_m to be real and positive. Tables of the c_m s for various j s are available, but it's easy enough to write them down when needed. Note also that the square roots in (10.33) and (10.34) are related by $m \leftrightarrow -m$.

Example of ladder operators. For convenience, let's list here the two most common cases needed in physics. For $j = \frac{1}{2}$:

$$J_+ \left| -\frac{1}{2} \right\rangle = \left| \frac{1}{2} \right\rangle, \quad J_- \left| \frac{1}{2} \right\rangle = \left| -\frac{1}{2} \right\rangle. \quad (10.35)$$

For $j = 1$:

$$J_+|-1\rangle = \sqrt{2}|0\rangle, \quad J_+|0\rangle = \sqrt{2}|1\rangle, \quad J_-|1\rangle = \sqrt{2}|0\rangle, \quad J_-|0\rangle = \sqrt{2}|-1\rangle. \quad (10.36)$$

Note that the (nonzero) c_m for these two cases are particularly easy to remember (that is, if for some odd reason you want to): they are all 1 in one case, and $\sqrt{2}$ in the other. Let us also write down the $j = 2$ case for later use:

$$\begin{aligned} J_+|-2\rangle &= 2|-1\rangle, & J_+|-1\rangle &= \sqrt{6}|0\rangle, & J_+|0\rangle &= \sqrt{6}|1\rangle, & J_+|1\rangle &= 2|2\rangle, \\ J_-|2\rangle &= 2|1\rangle, & J_-|1\rangle &= \sqrt{6}|0\rangle, & J_-|0\rangle &= \sqrt{6}|-1\rangle, & J_-|-1\rangle &= 2|-2\rangle. \end{aligned} \quad (10.37)$$

So you did all of this before in QP1 and might be wondering what is new so what have you learnt from this? We'll we've implicitly figured out how to write J_+ and J_- , and thereby also J_+ and J_- in a $2j+1$ dimensional basis working only from the known commutation relationships between J_x , J_y and J_z . Or, in group theoretic language, from the structure constants that define the Lie Algebra of 3D rotations, $SO(3)$, we have computed a $2j+1$ dimensional representation of the $SO(3)$ Lie algebra.

10.3 Addition of Angular Momentum (e.g. multiplying $SO(3)$ representations)

This is Section IV.3, pg. 217 of GTNFP. Note both here and earlier I have chosen to skip constructing high dimensional representations, and finding their irreps, via tensors in favour of a more familiar ladder operator (i.e., lie algebraic) approach. But if you're interested and have time do go and read those bits from GTNFP.

In the prototypical quantum mechanical problem, two particles orbit in a spherically symmetric potential. Particle unprime could be in the state $|l, m\rangle$, and particle prime in the state $|l', m'\rangle$. If

the particles do not interact, then the eigenstates of the Hamiltonian could be written using the product states $|l, m\rangle \otimes |l', m'\rangle$. But the particles do interact with each other, and the Hamiltonian H then includes an interaction term H_I (which we take to depend only on the distance between the two particles). To leave H invariant, we would have to rotate both particles, of course. We want to understand what group theory tells us about the wave function of the two particles.

But the mathematical problem involved corresponds to breaking the tensor product of two representations of $SO(3)$ down into its irreducible representations. Suppose we are given two irreducible representations of the Lie algebra of $SO(3)$, labeled by j and j' . We have two sets of kets: $|j, m\rangle$ with $m = -j, -j+1, \dots, j-1, j$, and $|j', m'\rangle$ with $m' = -j', -j'+1, \dots, j'-1, j'$. The $2j+1$ kets $|j, m\rangle$, when acted on by the generators J_i , transform into linear combinations of one another. Similarly, the $2j'+1$ kets $|j', m'\rangle$, when acted on by the generators J_i , transform into linear combinations of one another. Now we write down the product kets $|j, m\rangle \otimes |j', m'\rangle$. There are $(2j+1)(2j'+1)$ such states. When acted on by the generators J_i , these kets naturally transform into linear combinations of one another, thus furnishing a $(2j+1)(2j'+1)$ -dimensional representation of $SO(3)$. We expect this representation to be reducible.

The concept of irreducibility transfers naturally from representations of a Lie group to the representations of a Lie algebra. If the matrices representing the J_i s could be block diagonalized, we say that the representation is reducible. When the generators J_i act on the product kets $|j, m\rangle \otimes |j', m'\rangle$, they act on $|j, m\rangle$ and then on $|j', m'\rangle$. We can verify this more-or-less self-evident fact by rotating the product kets. Under an infinitesimal rotation around the z -axis, $R \simeq I + i\theta J_z$, both $|j, m\rangle$ and $|j', m'\rangle$ rotate, of course. Thus,

$$\begin{aligned} |j, m\rangle \otimes |j', m'\rangle &\rightarrow R|j, m\rangle \otimes R|j', m'\rangle \\ &\simeq (I + i\theta J_z)|j, m\rangle \otimes (I + i\theta J_z)|j', m'\rangle \\ &= (I + i\theta m)|j, m\rangle \otimes (I + i\theta m')|j', m'\rangle \\ &\simeq (I + i\theta(m + m'))|j, m\rangle \otimes |j', m'\rangle + \mathcal{O}(\theta^2). \end{aligned}$$

In other words,

$$J_z(|j, m\rangle \otimes |j', m'\rangle) = (J_z|j, m\rangle) \otimes |j', m'\rangle + |j, m\rangle \otimes (J_z|j', m'\rangle), \quad (10.38)$$

or equivalently,

$$J_z|j, m\rangle \otimes |j', m'\rangle = (m + m')|j, m\rangle \otimes |j', m'\rangle. \quad (10.39)$$

The operator J_z acts in turn on $|j, m\rangle$ and $|j', m'\rangle$. Thus, $|j, m\rangle \otimes |j', m'\rangle$ is an eigenstate of J_z with eigenvalue $m + m'$. The eigenvalues of J_z simply add.

To avoid writing \otimes constantly, we denote $|j, m\rangle \otimes |j', m'\rangle$ by $|j, j', m, m'\rangle$. We just learned that $|j, j', m, m'\rangle$ is an eigenstate of J_z with eigenvalue $m + m'$. We know that the maximum values m and m' can attain are j and j' , respectively, and thus the maximum eigenvalue J_z can have is $j + j'$, attained with the state $|j, j', j, j'\rangle$.

10.3.1 The Clebsch-Gordan decomposition (examinable!)

The plan of attack is to apply the lowering operator J_- repeatedly on $|j, j', j, j'\rangle$. To see what is going on, let's go through some examples.

Example (A): $j = \frac{1}{2}, j' = \frac{1}{2}$

There are $(2j+1)(2j'+1) = 2 \cdot 2 = 4$ states $|\frac{1}{2}, \frac{1}{2}, m, m'\rangle$ with $m = -\frac{1}{2}, \frac{1}{2}$ and $m' = -\frac{1}{2}, \frac{1}{2}$. Since j and j' are fixed in this discussion, we might as well omit them and simply write $|m, m'\rangle$ instead

of $|j, j', m, m'\rangle$. Let's go slow and list the four states:

$$\left| \frac{1}{2}, \frac{1}{2} \right\rangle, \left| \frac{1}{2}, -\frac{1}{2} \right\rangle, \left| -\frac{1}{2}, \frac{1}{2} \right\rangle, \left| -\frac{1}{2}, -\frac{1}{2} \right\rangle.$$

As explained above, we expect these four states to furnish a reducible representation and thus to fall apart into a bunch of irreducible representations labeled by J . Let us denote the states in these irreducible representations by $|J, M\rangle$ with $M = -J, -J + 1, \dots, J$.

Of these four states, $\left| \frac{1}{2}, \frac{1}{2} \right\rangle$ has the maximum eigenvalue J_z can have, namely, $\frac{1}{2} + \frac{1}{2} = 1$. Thus, it can belong only to an irreducible representation labeled by J with $J \geq 1$. In fact, it cannot be that $J > 1$, because then there would have to be states with eigenvalue of J_z greater than 1. So we have

$$|1, 1\rangle = \left| \frac{1}{2}, \frac{1}{2} \right\rangle. \quad (10.40)$$

The strategy is to climb down the ladder by applying J_- repeatedly. So, act with J_- on $|1, 1\rangle = \left| \frac{1}{2}, \frac{1}{2} \right\rangle$. But we know from chapter IV.2 how J_- acts on these states. Using Eq. (10.36), we have

$$J_-|1, 1\rangle = \sqrt{2}|1, 0\rangle, \quad (10.41)$$

while using Eq. (10.35), we have

$$J_- \left| \frac{1}{2}, \frac{1}{2} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| -\frac{1}{2}, \frac{1}{2} \right\rangle + \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \right). \quad (10.42)$$

Thus,

$$|1, 0\rangle = \frac{1}{\sqrt{2}} \left(\left| -\frac{1}{2}, \frac{1}{2} \right\rangle + \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \right). \quad (10.43)$$

Applying J_- again, we obtain

$$\sqrt{2}|1, -1\rangle = \frac{1}{\sqrt{2}} \left(2 \left| -\frac{1}{2}, -\frac{1}{2} \right\rangle \right), \quad (10.44)$$

and thus

$$|1, -1\rangle = \left| -\frac{1}{2}, -\frac{1}{2} \right\rangle, \quad (10.45)$$

which we might have expected by applying symmetry to our starting equation, flipping the z -axis.

We have now accounted for three of the four states we started with. The only orthogonal state left is the linear combination

$$\frac{1}{\sqrt{2}} \left(\left| -\frac{1}{2}, \frac{1}{2} \right\rangle - \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \right), \quad (10.46)$$

which has eigenvalue 0 under J_z ; this state, all by its lonesome self, must be

$$|J = 0, M = 0\rangle. \quad (10.47)$$

Let me summarize our results, giving $|J, M\rangle$ in terms of $|m, m'\rangle$:

$$|1, 1\rangle = \left| \frac{1}{2}, \frac{1}{2} \right\rangle, \quad (10.48)$$

$$|1, 0\rangle = \frac{1}{\sqrt{2}} \left(\left| -\frac{1}{2}, \frac{1}{2} \right\rangle + \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \right), \quad (10.49)$$

$$|1, -1\rangle = \left| -\frac{1}{2}, -\frac{1}{2} \right\rangle, \quad (10.50)$$

$$|0, 0\rangle = \frac{1}{\sqrt{2}} \left(\left| -\frac{1}{2}, \frac{1}{2} \right\rangle - \left| \frac{1}{2}, -\frac{1}{2} \right\rangle \right). \quad (10.51)$$

Or, in more group theoretic language, we have just shown that

$$\frac{1}{2} \otimes \frac{1}{2} = 1 \oplus 0. \quad (10.52)$$

Example B:

Now that you have gone through example (A), we can practically race through this example. Start with $3 \cdot 3 = 9$ states $|1, 1, m, m'\rangle$ with $m = -1, 0, 1$ and $m' = -1, 0, 1$. Again, we write $|m, m'\rangle$ instead of $|j, j', m, m'\rangle$. These nine states furnish a reducible representation which decomposes into a bunch of irreducible representations labeled by J . In these irreducible representations, the states are denoted by $|J, M\rangle$ with $M = -J, -J + 1, \dots, J$.

Of these nine states, the one with the highest value of M is $|1, 1\rangle$, for which $M = 1 + 1 = 2$. So start with

$$|2, 2\rangle = |1, 1\rangle. \quad (10.53)$$

and climb down the ladder. Act with J_- , using Eq. (10.37). But as remarked in connection with example (A), we don't even need to look these up. Remembering that $|1, 1\rangle$ means $|1\rangle \otimes |1\rangle$, we lower each of the two kets in turn to $|0\rangle$, so that we end up with a linear combination of $|1, 0\rangle$ and $|0, 1\rangle$. But by the principle of democracy, these two kets must appear with equal weight, and thus

$$|2, 1\rangle = \frac{1}{\sqrt{2}} (|1, 0\rangle + |0, 1\rangle). \quad (10.54)$$

Onward! Apply J_- again. Advocating democracy is not enough anymore, since this only tells us that we get a state proportional to $| -1, 1\rangle + c|0, 0\rangle + |1, -1\rangle$ with an unknown constant c . We have to invoke Eq. (10.37) to determine $c = 2$. Thus,

$$|2, 0\rangle = \frac{1}{\sqrt{6}} (| -1, 1\rangle + 2|0, 0\rangle + |1, -1\rangle). \quad (10.55)$$

At this point we could keep going, but there is no need to even apply J_- anymore. By reflection symmetry along the z -axis, we have

$$|2, -1\rangle = \frac{1}{\sqrt{2}} (|0, -1\rangle + | -1, 0\rangle), \quad (10.56)$$

and

$$|2, -2\rangle = | -1, -1\rangle. \quad (10.57)$$

These account for five out of the nine states. Of the remaining states, the maximum value M can have is 1, attained by the states $|0, 1\rangle$ and $|1, 0\rangle$. But this state $|J = 1, M = 1\rangle$ has to be orthogonal to the state

$$|2, 1\rangle = \frac{1}{\sqrt{2}} (|0, 1\rangle + |1, 0\rangle) \quad (10.58)$$

we already have. Thus, with essentially no work, we have found

$$|1, 1\rangle = \frac{1}{\sqrt{2}} (|0, 1\rangle - |1, 0\rangle). \quad (10.59)$$

Again, apply J_- on this, and by democracy, we obtain with no work at all

$$|1, 0\rangle = \frac{1}{\sqrt{2}} (|-1, 1\rangle - |1, -1\rangle), \quad (10.60)$$

and then

$$|1, -1\rangle = \frac{1}{\sqrt{2}} (|-1, 0\rangle - |0, -1\rangle). \quad (10.61)$$

So now there is only $9 - 5 - 3 = 1$ state left. This lone state is determined by the fact that it is orthogonal to everybody else. Hence,

$$|0, 0\rangle = \frac{1}{\sqrt{3}} (|-1, 1\rangle - |0, 0\rangle + |1, -1\rangle). \quad (10.62)$$

Or, in more group theoretic language, have just shown that

$$1 \otimes 1 = 2 \oplus 1 \oplus 0. \quad (10.63)$$

General case

This procedure breaking down $j \otimes j'$ into a direct sum of irreducible representations, i.e., to the form

$$|J, M\rangle = \sum_{m=-j}^j \sum_{m'=-j'}^{j'} |j, j', m, m'\rangle \langle j, j', m, m'|J, M\rangle, \quad (10.64)$$

is known as the Clebsch-Gordan decomposition. The various coefficients that appear are known as Clebsch-Gordan coefficients. For example, the numbers $\frac{1}{\sqrt{6}}$ and $\sqrt{\frac{2}{3}}$ in

$$|2, 0\rangle = \frac{1}{\sqrt{6}} (|-1, 1\rangle + 2|0, 0\rangle + |1, -1\rangle). \quad (10.65)$$

In other words, $|J, M\rangle$ is a linear combination of $|j, j', m, m'\rangle$ with the Clebsch-Gordan coefficients given by the numbers $\langle j, j', m, m'|J, M\rangle$. Since these vanish unless $m + m' = M$, the double sum in (10.64) reduces to a single sum.

10.3.2 Wigner-Eckert Theorem (Non-examinable)

Remember when we looked at time dependent perturbation theory we saw that transition rates depended on terms of the form

$$\langle n|V|i\rangle \quad (10.66)$$

where V is a perturbation term to the Hamiltonian and $|i\rangle$ and $|n\rangle$ are some eigenstates of the original Hamiltonian. In the context of atomic and molecular physics the perturbation is often invariant under $SO(3)$ and the initial and final states are often initially degenerate angular momentum states, i.e., $|i\rangle = |\alpha, j, m\rangle$ and $|n\rangle = |\alpha', j', m'\rangle$ where α just represents generic other quantum numbers that define the state. In this case, we can use Clebsch-Gordan coefficients to simplify the computation of these terms and the theorem that allows us to do so is called the Wigner-Eckart theorem.

Consider an operator V that transforms under the group $SO(3)$. The Wigner-Eckart theorem states that for a matrix element:

$$\langle \alpha', j', m' | V_{JM} | \alpha, j, m \rangle = \begin{pmatrix} j' & J & j \\ m' & M & -m \end{pmatrix} \langle \alpha', j' | V_J | \alpha, j \rangle, \quad (10.67)$$

where the first term is a Clebsch-Gordan coefficient and the second term, $\langle \alpha', j' | V_J | \alpha, j \rangle$, is the reduced matrix element. The theorem indicates that the amplitude factors into a product of two terms: one term encapsulating the group-theoretical properties of the problem (via Clebsch-Gordan coefficients) and the other representing the dynamics, which is independent of m and m' , and group theory cannot help us compute.

The selection rules for transitions under $SO(3)$ symmetry emerge naturally from the Clebsch-Gordan coefficients. In particular, the matrix element in (10.67) vanishes unless:

$$\Delta j = j' - j \leq J, \quad \Delta m = m' - m = M \leq J. \quad (10.68)$$

These constraints explain why only specific transitions occur in atomic spectroscopy and why others are forbidden. For a transition where the operator V transforms as a spherical harmonic Y_J^M , the rules imply that:

- $|j' - j| \leq J$ ensures the total angular momentum change aligns with the symmetry of the operator.
- $M = m' - m$ dictates the projection of angular momentum change.

The intensity of an observed transition is proportional to the absolute square of the matrix element:

$$\text{Intensity} \propto |\langle \alpha', j', m' | V_{JM} | \alpha, j, m \rangle|^2, \quad (10.69)$$

with forbidden transitions resulting from violations of the conditions in (10.68). This example therefore highlights the deep role of group theory in determining physically observed phenomena.

I have included this example here to link back to our study of transition rates earlier on in the course and as a taster of material that you will study in more detail in Jean Philippe Bruntut's atomic physics course next term. However, the Wigner Eckert theorem will be un-examinable this year in QP2.

10.4 Other applications of Group Theory and Lie Algebras

To end, I just want to highlight that Lie Groups and Lie Algebras appear all over the place. I've focussed on their application in angular momentum because this should be most familiar given what you've seen before- and is important to understand in a lot of atomic and molecular physics. But let me just name drop a few other applications and give you a few references as to where you can read more about them. (This is, of course, all non-examinable.)

- **Particle Physics.** The most obvious area where you really need to understand Lie Groups and Lie Algebras in Particle Physics. In fact, if you decide to focus on this in your master's you will start with a TPIV devoted to learning Lie Algebra for Particle physics via this textbook.
- **Controlling quantum systems.** You've seen that Lie Algebras are all about figuring out what Hermitian operators generate what unitary representations of a group... this means you can use your understanding of Lie Algebras to figure out how to design Hamiltonians to implement various unitaries on that systems, that is, how to control that system. This is important if you are an theorist/experimentalist trying to build a quantum computer (or other quantum technology). It is also important if you are a quantum software developer trying to design certain quantum algorithms. For an introduction see this tutorial.

- **Machine Learning (Quantum and Classical)** Why is symmetry important in machine learning? This is explained very nicely in this blog post. Consider everyone's favourite example of a machine learning task: classifying images to decide if they include cats or dogs. (If you want a less inane task consider trying to classify whether an images of tumours contain cancerous cells. Or whether images of galaxies contain supernova.)

There are many different transformations one can perform to an image of a cat that still leave it as a picture of a cat - e.g. you can rotate it or reflect it and you are still left with an image of a cat (Fig. 10.1).

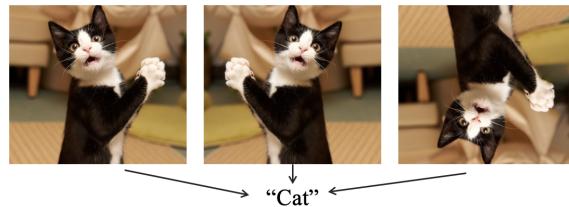


Figure 10.1: A picture of a rotated cat or flipped cat is still a picture of a cat.

We want our classifier to be *invariant* under these symmetry transformations. In the context of image processing (or modelling molecules or materials) these symmetry transformations will typically be geometric transformations. Beyond image classification other symmetry transformations, such as permutation invariance, can become important. And, of course, mathematically all these symmetry transformations can be represented by the actions of elements of a symmetry group. The theory of Lie Algebras (and group/rep theory more generally) provides us with a way of constructing models with these symmetries in built. For more information on this take a look at my notes from last year, check out this (quite technical) tutorial or this (less technical) tutorial.

- **Classically simulating quantum systems.** As we've discussed before, simulating quantum systems classically is generally hard because it involves multiplying together exponentially large matrices. But if your system has symmetries you can use clever tricks from the theory of Lie Algebras and Lie Groups to make this easier. See this tutorial for more information.

Let $|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle \in \mathcal{H}_1$, $|\phi\rangle \in \mathcal{H}_2$, $\dim(\mathcal{H}_1) > \dim(\mathcal{H}_2)$

$ \psi_1\rangle$	$ \psi_1\rangle \phi\rangle$
$ \psi_1\rangle \psi_2\rangle$	$ \psi_1\rangle \langle \psi_3 $

Table 1: Is this loss?

Figure 10.2: And let's end with one more meme. I originally gave this the wooden spoon award because my reaction, similarly to many of you I guess, was 'is this even a meme?'. But having now had it explained to me I have to concede its pretty clever. And if you don't get it - that's just a healthy sign that you don't spend too much time online.

Bibliography

- [1] John S. Bell. “On the Einstein Podolsky Rosen paradox”. In: *Physics Physique Fizika* 1.3 (Nov. 1964), pp. 195–200. DOI: [10.1103/PhysicsPhysiqueFizika.1.195](https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195).
- [2] John S. Bell. “On the Problem of Hidden Variables in Quantum Mechanics”. In: *Rev.Mod.Phys.* 38 (1966), pp. 447–452. DOI: [10.1103/RevModPhys.38.447](https://doi.org/10.1103/RevModPhys.38.447).
- [3] N. Bohr. “Can Quantum-Mechanical Description of Physical Reality be Considered Complete?” In: *Physical Review* 48.8 (Oct. 1935), pp. 696–702. DOI: [10.1103/PhysRev.48.696](https://doi.org/10.1103/PhysRev.48.696).
- [4] John F. Clauser et al. “Proposed Experiment to Test Local Hidden-Variable Theories”. In: *Physical Review Letters* 23.15 (Oct. 1969), pp. 880–884. DOI: [10.1103/PhysRevLett.23.880](https://doi.org/10.1103/PhysRevLett.23.880).
- [5] A. Einstein, B. Podolsky, and N. Rosen. “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” In: *Physical Review* 47.10 (May 1935), pp. 777–780. ISSN: 0031-899X. DOI: [10.1103/PhysRev.47.777](https://doi.org/10.1103/PhysRev.47.777).
- [6] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and Correlation Effects”. In: *Physical Review* 140.4A (Nov. 1965), A1133–A1138. ISSN: 0031-899X. DOI: [10.1103/PhysRev.140.A1133](https://doi.org/10.1103/PhysRev.140.A1133).